K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{1}{3}\left(4x^2-4x+1\right)-\dfrac{1}{2}\left(9x^2+6x+1\right)=\dfrac{1}{3}\left(2x-3x^2-2+3x\right)\)

\(\Leftrightarrow\dfrac{4}{3}x^2-\dfrac{4}{3}x+\dfrac{4}{3}-\dfrac{9}{2}x^2-3x-\dfrac{1}{2}=\dfrac{1}{3}\left(-3x^2+5x-2\right)\)

\(\Leftrightarrow x^2\cdot\dfrac{-19}{6}-\dfrac{13}{3}x+\dfrac{5}{6}+x^2-\dfrac{5}{3}x+\dfrac{2}{3}=0\)

\(\Leftrightarrow x^2\cdot\dfrac{-13}{6}-6x+\dfrac{3}{2}=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot\left(-\dfrac{13}{6}\right)\cdot\dfrac{3}{2}=49\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-7}{2\cdot\dfrac{-13}{6}}=\dfrac{3}{13}\\x_2=\dfrac{6+7}{2\cdot\dfrac{-13}{6}}=-3\end{matrix}\right.\)