Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các vị trí so le trong, và đồng vị với \(\widehat{mAB}\) là:
\(\widehat{B_1};\widehat{APQ};\widehat{nPA}\)
b) Ta có: \(\widehat{B_1}=\widehat{mAB}=50^o\) (hai góc so le trong)
Mà: \(\widehat{B_1}+\widehat{B_2}=180^o\Rightarrow\widehat{B_2}=180^o-50^o=130^o\)
c) Ta có: \(\widehat{mAB}+\widehat{A_1}=180^o\Rightarrow\widehat{A_1}=180^o-\widehat{mAB}=180^o-50^o=130^o\)
Mà: \(\widehat{mAB}=\widehat{A_2}=50^o\)(hai góc đối đỉnh)
d) Ta có:
\(\widehat{APQ}+\widehat{PQB}=180^o\)
\(\Rightarrow\widehat{PQB}=180^o-\widehat{APQ}=180^o-110^o=70^o\)
a: \(A=\dfrac{3n^2+3n}{12n}=\dfrac{3n\left(n+1\right)}{3n\cdot4}=\dfrac{n+1}{4}\)
Vì 4=2^2 ko có thừa số nguyên tố nào khác 2 và 5
nên \(A=\dfrac{n+1}{4}\) viết được dưới dạng số thập phân hữu hạn
a: góc yAt'=180 độ-60 độ=120 độ
góc yAt'=góc yOx
mà hai góc này đồng vị
nên At'//Ox
b: góc mOA=góc xOy/2=60 độ
góc nAO=góc OAt/2=60 độ
=>góc mOA=góc nAO
=>Om//An
a: x<a<y
=>102,39...<a<103,02...
=>a=103; a=103,01; a=103,015
b: x<a<y
=>-0,41...<a<0,41...
=>a=0; a=0,2; a=0,3
a, a = 102,4 hoặc a=103 hoặc a= 103,01
b, a=0,4 hoặc a=0 hoặc a=-0,1
góc xOz=góc yOz=90/2=45 độ
Bm//Oz
=>góc mBO+góc BOz=180 độ
=>góc mBO=135 độ
Cn//Oz
=>góc nCy=góc zOy(hai góc đồng vị)
=>góc nCy=45 độ
Trên google á nhưng mình thi thì đa số là nó nâng cao lên rất nhiều so với sgk, vd trong sách học là 1 + 2 = ? thì trong đây là 1 + 2 - 3 + 4 + 223 = ? nói chung là vio lớp 7 nó chỉ có nâng cao lên thôi
a: \(f\left(x\right)=x^4\left(-7-2\right)+2x^3+x^2\left(3-6\right)+x\left(-5+8\right)+6-7\)
\(=-9x^4+2x^3-3x^2+3x-1\)
\(g\left(x\right)=3x^4-2x^3+4x^2-7x+4\)
\(h\left(x\right)=-9x^4-2x^3+5x^2+6x-5\)
b: Bậc của f(x) là 4
Hệ số tự do của f(x) là -1
Hệ số cao nhất là -9
Bậc của g(x) là 4
Hệ số tự do là 4
Hệ số cao nhất là 3
Bậc của h(x) là 4
Hệ số tự do là -5
Hệ số cao nhất là -9
\(0,\left(37\right)+0,\left(62\right)\)
\(=\dfrac{37}{99}+\dfrac{62}{99}\)
\(=\dfrac{37+62}{99}\)
\(=\dfrac{99}{99}\)
\(=1\)
Để chứng tỏ một bài, em hãy giải thích tính chất của hai số trong biểu thức nhé: đó là những số thập phân vô hạn tuần hoàn, từ đó chúng ta mới biểu diễn chúng dưới dạng phân số quy tắc.