Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc xOz=góc yOz=90/2=45 độ
Bm//Oz
=>góc mBO+góc BOz=180 độ
=>góc mBO=135 độ
Cn//Oz
=>góc nCy=góc zOy(hai góc đồng vị)
=>góc nCy=45 độ
a: \(A=\dfrac{3n^2+3n}{12n}=\dfrac{3n\left(n+1\right)}{3n\cdot4}=\dfrac{n+1}{4}\)
Vì 4=2^2 ko có thừa số nguyên tố nào khác 2 và 5
nên \(A=\dfrac{n+1}{4}\) viết được dưới dạng số thập phân hữu hạn
a: góc yAt'=180 độ-60 độ=120 độ
góc yAt'=góc yOx
mà hai góc này đồng vị
nên At'//Ox
b: góc mOA=góc xOy/2=60 độ
góc nAO=góc OAt/2=60 độ
=>góc mOA=góc nAO
=>Om//An
a) Các vị trí so le trong, và đồng vị với \(\widehat{mAB}\) là:
\(\widehat{B_1};\widehat{APQ};\widehat{nPA}\)
b) Ta có: \(\widehat{B_1}=\widehat{mAB}=50^o\) (hai góc so le trong)
Mà: \(\widehat{B_1}+\widehat{B_2}=180^o\Rightarrow\widehat{B_2}=180^o-50^o=130^o\)
c) Ta có: \(\widehat{mAB}+\widehat{A_1}=180^o\Rightarrow\widehat{A_1}=180^o-\widehat{mAB}=180^o-50^o=130^o\)
Mà: \(\widehat{mAB}=\widehat{A_2}=50^o\)(hai góc đối đỉnh)
d) Ta có:
\(\widehat{APQ}+\widehat{PQB}=180^o\)
\(\Rightarrow\widehat{PQB}=180^o-\widehat{APQ}=180^o-110^o=70^o\)
\(0,\left(37\right)+0,\left(62\right)\)
\(=\dfrac{37}{99}+\dfrac{62}{99}\)
\(=\dfrac{37+62}{99}\)
\(=\dfrac{99}{99}\)
\(=1\)
Để chứng tỏ một bài, em hãy giải thích tính chất của hai số trong biểu thức nhé: đó là những số thập phân vô hạn tuần hoàn, từ đó chúng ta mới biểu diễn chúng dưới dạng phân số quy tắc.
Chắc kô đk đâu mình cũng đang thắc mắc
tích chi mik nha mơn nhìu
bn có thể thấy trên thanh công cụ ấy cái mục thứ tư ấy rồi ấn vô đó rồi vẽ thôi
xong rồi ấn chèn vào bài viết
\(c,\Rightarrow\left|x-\dfrac{1}{9}\right|=-\dfrac{4}{5}\\ \Rightarrow x\in\varnothing\left(\left|x-\dfrac{1}{9}\right|\ge0>-\dfrac{4}{5}\right)\\ d,\Rightarrow\left\{{}\begin{matrix}3x-2=0\\4y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{4}\end{matrix}\right.\\ e,\Rightarrow\left\{{}\begin{matrix}2x+1=0\\x-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x=y=-\dfrac{1}{2}\)
a) \(N\left(x\right)=9-x^3+4x^3-7x+3x^2+x^2\)
\(N\left(x\right)=-\left(x^3-4x^3\right)+\left(3x^2+x^2\right)-7x+9\)
\(N\left(x\right)=3x^3+4x^2-7x+9\)
\(M\left(x\right)=4+6x^2+3x+5x^3-2x^3-2x^2\)
\(M\left(x\right)=\left(5x^3-2x^3\right)+\left(6x^2-2x^2\right)+3x+4\)
\(M\left(x\right)=3x^3+4x^2+3x+4\)
b) \(P\left(x\right)=N\left(x\right)-M\left(x\right)\)
\(P\left(x\right)=\left(3x^3+4x^2-7x+9\right)-\left(3x^2+4x^2+3x+4\right)\)
\(P\left(x\right)=3x^3+4x^2-7x+9-3x^3-4x^2-3x-4\)
\(P\left(x\right)=-10x+5\)
\(Q\left(x\right)=N\left(x\right)+M\left(x\right)\)
\(Q\left(x\right)=\left(3x^3+4x^2-7x+9\right)+\left(3x^3+4x^2+3x+4\right)\)
\(Q\left(x\right)=3x^3+4x^2-7x+9+3x^3+4x^2+3x+4\)
\(Q\left(x\right)=6x^3+8x^2-4x+13\)
c) Nghiệm của đa thức \(P\left(x\right)\)
\(P\left(x\right)=-10x+5=0\)
\(\Rightarrow-10x=-5\)
\(\Rightarrow10x=5\)
\(\Rightarrow x=\dfrac{5}{10}=\dfrac{1}{2}\)
Nghiệm của đa thức \(Q\left(x\right)\)
Vì: \(Q\left(x\right)=6x^3+8x^2+4x+13\ge0\)
\(\Rightarrow Q\left(x\right)\ge0\)
Vậy đa thức vô nghiệm
d) \(Q\left(x\right)\left(1-2x\right)\)
\(=\left(6x^3+8x^2-4x+13\right)\left(1-2x\right)\)
\(=6x^3+8x^2-4x+13-12x^4-16x^3+8x^2-26x\)
\(=-12x^4-10x^3+16x^2-30x+13\)
a: x<a<y
=>102,39...<a<103,02...
=>a=103; a=103,01; a=103,015
b: x<a<y
=>-0,41...<a<0,41...
=>a=0; a=0,2; a=0,3
a, a = 102,4 hoặc a=103 hoặc a= 103,01
b, a=0,4 hoặc a=0 hoặc a=-0,1