Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a⋮̸5\)
\(b⋮̸5\)
Do đó: \(\left\{{}\begin{matrix}a+b⋮̸5\\a-b⋮̸5\\ab⋮̸5\end{matrix}\right.\)
Ta có: \(a^4-b^4\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\cdot\left[\left(a+b\right)^2-2ab\right]⋮̸5\)
#)Giải :
Ta có :
\(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=n\left\{m\left[m^2-1\right]-m\left[n\left(n^2-1\right)\right]\right\}\)
\(=mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)\)
\(m\left(m-1\right)\left(m+1\right)⋮6\left(1\right)\)
\(n\left(n-1\right)\left(n+1\right)⋮6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow mn\left(m-1\right)\left(m+1\right)-mn\left(n-1\right)\left(n+1\right)⋮6\)
\(\Rightarrow mn\left(m^2-n^2\right)⋮6\)
Mà \(4mn\left(m^2-n^2\right)⋮4\)
\(\Rightarrow4mn\left(m^2-n^2\right)⋮24\left(đpcm\right)\)
220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )
119 ≡ −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )
69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )
119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )
69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )
Suy ra A ⋮ 17 (2)
Lại có A là số chẵn (Vì \(69^{220^{119}}\), \(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)
Suy ra: A ⋮ 2 (3)
Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102
a) Đặt P= x4-9x3+21x2+x+a; Q= x2-x-2
Do đa thức P có bậc là 4, đa thức Q có bậc là 2 mà P chia hết cho Q nên đa thức thương có bậc là 2
Đa thức thương có dạng : x2+cx+d
=> x4-9x3+21x2+x+a=(x2-x-2)(x2+cx+d)
=> x4-9x3+21x2+x+a = x4+cx3+dx2-x3-cx2-dx-2x2-2cx-2d
=> x4-9x3+21x2+x+a = x4+(c-1)x3+(d-c-2)x2-(d-2c)x-2d
=> c-1=-9 =>c=-8 =>c=-8
d-c-2=21 d=21+2+(-8) d=15
-2d=a a=-2d a=(-2).15=-30
Vậy a=-30 để có phép chia hết x4-9x3+21x2+x+a cho x2-x-2
Câu còn lại làm tương tự thôi
60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²
* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)
* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :
........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)
* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }
Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )
Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi
Ta có :
(432004 + 432005) = 432004 x (1 + 43) = 432004 x 44
Vì 44 chia hết cho 11 nên 432004 x 44 chia hết cho 11 hay (432004 + 432005) chia hết cho 11 (ĐPCM)
Ủng hộ mk nha ^ ~ ^
b) Ta có:
273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 x (1 + 3) = 39 x 4
Vì 4 chia hết cho 4 nên 39 x 4 chia hết cho 4 hay (273 + 95) chia hết cho 4 (ĐPCM)
Xin lổi vì đã làm thiếu nhg nhớ ủng hộ mk nha cảm ơn nhìu !!!