Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ 1,M=6+5=11\\ N=\sqrt{5}-1-\sqrt{5}=-1\\ 2,\\ a,P=1+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ P=1+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=1+\sqrt{x}\\ b,P>3\Leftrightarrow1+\sqrt{x}>3\\ \Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
Với `x >= 0,x \ne 1` có:
`C=A/B=A:B=[\sqrt{x}+1]/[x+\sqrt{x}+1]:(\sqrt{x}/[x\sqrt{x}-1]+1/[\sqrt{x}-1])`
`C=[\sqrt{x}+1]/[x+\sqrt{x}+1]:[\sqrt{x}+x+\sqrt{x}+1]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`
`C=[\sqrt{x}+1]/[x+\sqrt{x}+1].[(\sqrt{x}-1)(x+\sqrt{x}+1)]/[x+2\sqrt{x}+1]`
`C=[\sqrt{x}+1]/[x+\sqrt{x}+1].[(\sqrt{x}-1)(x+\sqrt{x}+1)]/[(\sqrt{x}+1)^2]`
`C=[\sqrt{x}-1]/[\sqrt{x}+1]`
1.Thế \(x=4\) vào A, ta được:
\(A=\dfrac{\sqrt{4}+1}{4+\sqrt{4}+1}=\dfrac{2+1}{4+2+1}=\dfrac{3}{7}\)
2.
\(B=\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}^3-1}+\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{\sqrt{x}+\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(B=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(B=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(C=\dfrac{A}{B}\)
\(C=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}:\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(C=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Bài 2:
\(\sin65^0=\cos25^0\)
\(\cos70^0=\sin20^0\)
\(\tan80^0=\cot10^0\)
\(\cot68^0=\tan22^0\)
\(\sqrt{51-7\sqrt{8}}=\sqrt{7^2-7.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(7-\sqrt{2}\right)^2}=7-\sqrt{2}\)
(vì\(7=\sqrt{49}>\sqrt{2}\Rightarrow7-\sqrt{2}>0\))
a: Δ=(3m+1)^2-4(2m^2+m-1)
=9m^2+6m+1-8m^2-4m+4
=m^2+2m+5=(m+1)^2+4>=4
Do đó: PT luôn có hai nghiệm pb
b: A=(x1+x2)^2-5x2x1
=(3m+1)^2-5(2m^2+m-1)
=9m^2+6m+1-10m^2-5m+5
=-m^2+m+6
=-(m^2-m-6)
=-(m^2-m+1/4-25/4)
=-(m-1/2)^2+25/4<=25/4
Dấu = xảy ra khi m=1/2
Câu 4:
1: Xét (O) có
OI là một phần đường kính
CD là dây
I là trung điểm của CD
Do đó: OI⊥CD
Xét tứ giác OIAM có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: OIAM là tứ giác nội tiếp
hay O,I,A,M cùng thuộc 1 đường tròn(1)
Xét tứ giác OIBM có
\(\widehat{OIM}+\widehat{OBM}=180^0\)
Do đó: OIBM là tứ giác nội tiếp
hay O,I,B,M cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra O,I,A,M,B cùng thuộc 1 đường tròn