K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(\sin65^0=\cos25^0\)

\(\cos70^0=\sin20^0\)

\(\tan80^0=\cot10^0\)

\(\cot68^0=\tan22^0\)

31 tháng 10 2021

2.5

Thay x=1 và y=2 vào y=ax+5, ta được:

a+5=2

hay a=-3

31 tháng 10 2021

Câu này mk lm r nha!

Cũng xin cảm ơn bn đã giúp mk nha.Cảm ơn nhìu🥰

30 tháng 9 2021

\(1,\)

\(b,\)Để có hệ số góc bằng 3 thì \(m-1=3\Leftrightarrow m=4\)

\(2,\\ 1,\left\{{}\begin{matrix}x+4y=8\\2x+5y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+8y=16\\2x+5y=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=13\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+5=13\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=1\end{matrix}\right.\\ 2,\\ a,B=\left[\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right]\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\\ B=\dfrac{6\sqrt{a}-6+10-2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\\ B=\dfrac{4\sqrt{a}+4}{4\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{1}{\sqrt{a}}=\dfrac{\sqrt{a}}{a}\)

\(b,C=B\left(a-\sqrt{a}+1\right)=\dfrac{\sqrt{a}\left(a-\sqrt{a}+1\right)}{a}=\dfrac{a\sqrt{a}-a+\sqrt{a}}{a}\\ C=\sqrt{a}-1+\dfrac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}\cdot\dfrac{1}{\sqrt{a}}}-1=2-1=1\\ C_{min}=1\Leftrightarrow\sqrt{a}=\dfrac{1}{\sqrt{a}}\Leftrightarrow a=1\)

30 tháng 9 2021

câu 1 có thể giải rõ ra cho mk đc ko ạ

9 tháng 8 2021

1.

a)\(A=\sqrt{3}\left(2\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{3}{2}\sqrt{12}\right)\)

\(\Leftrightarrow A=\sqrt{3}\left(6\sqrt{3}-2\sqrt{3}+3\sqrt{3}\right)=\sqrt{3}\cdot7\sqrt{3}\)

\(\Leftrightarrow A=21\)

\(B=\dfrac{x+\sqrt{x}}{\sqrt{x}}+\dfrac{x-4}{\sqrt{x}+2}\left(x>0\right)\\ \Leftrightarrow B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}+2}\\ \Leftrightarrow B=\sqrt{x}+1+\sqrt{x}-2=2\sqrt{x}-1\)

b) Để \(A=B\)

\(\Leftrightarrow2\sqrt{x}-1=21\\ \Leftrightarrow2\sqrt{x}=22\\ \Leftrightarrow\sqrt{x}=11\\ \Leftrightarrow x=121\)

3.

a)\(A=\left(\sqrt{5}-\sqrt{2}\right)^2+\sqrt{40}\)

\(\Leftrightarrow A=7-2\sqrt{10}+2\sqrt{10}\\ \Leftrightarrow A=7\)

\(B=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\\ \Leftrightarrow B=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Leftrightarrow B=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Leftrightarrow B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) Để \(A=B\)

\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=7\Leftrightarrow\sqrt{x}-1=7\sqrt{x}+7\\ \Leftrightarrow6\sqrt{x}=-8\\ \Leftrightarrow\sqrt{x}=-\dfrac{4}{3}\\ \Leftrightarrow x=\dfrac{16}{9}\)

 

9 tháng 8 2021

4.

a)\(A=\left(2\sqrt{75}-5\sqrt{27}-\sqrt{192}+4\sqrt{48}\right):\sqrt{3}\)

\(\Leftrightarrow A=\left(10\sqrt{3}-15\sqrt{3}-8\sqrt{3}+16\sqrt{3}\right):\sqrt{3}\\ \Leftrightarrow A=10-15-8+16=3\)

\(P=\left(\dfrac{\sqrt{x}}{2+\sqrt{x}}+\dfrac{\sqrt{x}}{2-\sqrt{x}}\right):\dfrac{\sqrt{x}}{2+\sqrt{x}}\left(x>0;x\ne4\right)\\ \Leftrightarrow P=\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)+\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\cdot\dfrac{2+\sqrt{x}}{\sqrt{x}}\\ \Leftrightarrow P=\dfrac{2\sqrt{x}-x+2\sqrt{x}+x}{\sqrt{x}\left(2-\sqrt{x}\right)}=\dfrac{4}{2-\sqrt{x}}\)

b) Để \(A=P\)

\(\Leftrightarrow\dfrac{4}{2-\sqrt{x}}=3\\ \Leftrightarrow6-3\sqrt{x}=4\\ \Leftrightarrow3\sqrt{x}=2\\ \Leftrightarrow\sqrt{x}=\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{4}{9}\)

 

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

Em tách ra 1-2 bài/1 câu hỏi để mọi người hỗ trợ nhanh nhất nha!

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)