Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
`3/4-(2/3+3/4)+2/3+2022/2023`
`=3/4 - 2/3 - 3/4 +2/3 +2022/2023`
`= (3/4 -3/4 ) + (-2/3 +2/3) +2022/2023`
`= 0+0+2022/2023`
`=2022/2023`
\(\dfrac{3}{4}-\left(\dfrac{2}{3}+\dfrac{3}{4}\right)+\dfrac{2}{3}+\dfrac{2022}{2023}\)
\(=\dfrac{3}{4}-\left(\dfrac{8}{12}+\dfrac{9}{12}\right)+\dfrac{2}{3}+\dfrac{2022}{2023}\)
\(=\dfrac{3}{4}-\dfrac{17}{12}+\dfrac{2}{3}+\dfrac{2022}{2023}\)
\(=\dfrac{9}{12}-\dfrac{17}{12}+\dfrac{8}{12}+\dfrac{2022}{2023}\)
\(=\dfrac{9-17+8}{12}+\dfrac{2022}{2023}=\dfrac{0}{12}+\dfrac{2022}{2023}=0+\dfrac{2022}{2023}\)
\(=\dfrac{2022}{2023}\)
#YTVA
a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10
Gọi biểu thức trên là A , ta có :
A = 2^1+2^2 9+2^3+ 2^4 +...+2^10
2A= 2^2 +2^3+2^4+...+2^10+2^11
2A-A=2^11-2^1
A=2^10
b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết
5A = 5^2+5^3+...+5^25 5^26
5A-A=5^26 - 5^1
A=5^25
xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót
(1102 - 130) : 32 + 316 : 313
= 972 : 32 + 33
= 972 : 9 + 27
= 108 + 27
= 135
Ta có: ( x - 2) x ( y + 3) = -13 = (-13) x 1 = (-1) x 13
* Nếu x - 2 = -13 => x = (-13) + 2 = -11
y + 3 = 1 => y = 1-3 = -2
* Nếu x-2 = -1 => x = (-1) + 2 = 1
y + 3 = 13 => y = 13 - 3 = 10
Vậy có 2 cặp x;y x;y(-11;-2)
x;y(1;10)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{2^3}{3^3}\cdot\frac{3^2}{4^2}\cdot\left(-1\right)}{\frac{2^2}{5^2}\cdot\frac{\left(-5\right)^3}{12^3}}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\frac{-125}{1728}}=\frac{-\frac{1}{6}}{-\frac{5}{432}}=\left(-\frac{1}{6}\right)\cdot\left(-\frac{432}{5}\right)=\frac{72}{5}\)
\(A=3+3^2+3^3+...+3^{2023}\)
\(\Rightarrow A+1=1+3+3^2+3^3+...+3^{2023}\)
\(\Rightarrow A+1=\dfrac{3^{2023+1}-1}{3-1}=\dfrac{3^{2024}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{2024}-1}{2}-1=\dfrac{3^{2024}-3}{2}=\dfrac{3\left(3^{2023}-1\right)}{2}\)