Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co : \(\left|x+25\right|\ge0\forall x\in Z\)
\(\left|-y+5\right|\ge0\forall x\in Z\)
Mà : |x + 25| + |-y + 5| = 0
Nên : \(\hept{\begin{cases}\left|x+25\right|=0\\\left|-y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+25=0\\-y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-25\\y=5\end{cases}}\)
d, \(\left(3x-2^4\right).7^3=2.7^4\)
\(\Rightarrow3x-2^4=2.7^4:7^3\)
\(\Rightarrow3x-16=2.7\\ \Rightarrow3x=14+16\\ \Rightarrow3x=30\Rightarrow x=10\)
Vậy.....
e, \(x-\left[42+\left(-28\right)\right]=-8\)
\(\Rightarrow x-14=-8\\ \Rightarrow x=6\)
Vậy.....
g, \(x-7=-5\)
\(\Rightarrow x=-5+7\Rightarrow x=2\)
Vậy.....
h, \(15-5\left(x+4\right)=-12-3\)
\(\Rightarrow15-5x-20=-15\)
\(\Rightarrow-5x=-15-15+20\)
\(\Rightarrow-5x=-10\Rightarrow x=2\)
Vậy.....
Chúc bạn học tốt!!!
d/ \(\left(3x-2^4\right)\cdot7^3=2\cdot7^4\)
\(\Rightarrow3x-16=\dfrac{2\cdot7^4}{7^3}=14\)
\(\Rightarrow3x=14+16=30\)
\(\Rightarrow x=\dfrac{30}{3}=10\)
e/ Đễ ==> tự lm thì tốt hơn nhé
g/ Đễ ==> tự lm thì tốt hơn nhé
h/ \(15-5\left(x+4\right)=-12-3\)
\(\Rightarrow15-5x-20=-15\)
\(\Rightarrow-5x=-15+20-15=-10\)
\(\Rightarrow x=\dfrac{-10}{-5}=2\)
i/ \(\left(7-x\right)-\left(25+7\right)=-25\)
\(\Rightarrow7-x-25-7=-25\)
\(\Rightarrow-x=-25-7+7+25\)
\(\Rightarrow-x=0\Rightarrow x=0\)
k/ \(\left|x+2\right|=0\Rightarrow x+2=0\Rightarrow x=-2\)
l/ \(\left|x-3\right|=7-\left(-2\right)\)
\(\Rightarrow\left|x-3\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)
m/ \(\left|x-5\right|=\left|-7\right|\Rightarrow\left|x-5\right|=7\)
\(\Rightarrow\left[{}\begin{matrix}x-5=7\\x-5=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)
Câu 2:
a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
b: Để -4/2x-1 là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
c: Để 3x+7/x-1là số nguyên thì \(3x-3+10⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d: Để 4x-1/x-3 là số nguyên thì \(4x-12+11⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{4;2;14;-8\right\}\)
+)\(|\)x\(|\)<4 ma \(|\)x\(|\)\(\ge\)0\(\forall\)x
nên \(|\)x\(|\)\(\in\){0;1;2;3}
\(\Rightarrow\)x\(\in\){0;1;-1;2;-2;3;-3}
+)(x+2)(x-3)>0
nên x+2>0 và x-3>0 thì x>-2 và x>3 \(\Rightarrow\)x>3
hoặc x+2<0 và x-3<0 thì x<-2 và x<3 \(\Rightarrow\)x<-2
Vậy x>3 và x<-2
+)(x+2019)(x-25)=0
\(\Rightarrow\)x+2019=0 hoặc x-25=0
x=-2019 hoặc x=25
Vậy x=-2019;x=25
1 .=>x=4 hoặc x=-4
2. =>x+2>0 và x-3>0 hoặc x+2<0 và x-3 <0
=> x>-2 và x> 3 hoặc x<-2 và x <3
=>x>-2 và x<3
=>-2<x<3
=> x = -1,0,1,2
3. => x+2019 =0 hoặc x-25 =0
=> x = -2019 hoặc x = 25
Ta có |x+25|+|-25+y|=0
Mà \(\left|x+25\right|\ge0\forall x;\left|-y+25\right|\ge0\forall y\)
=> x+25=-y+25=0 => x=-25;y=25