Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy M là trung điểm của CD
AC2−AD2=BC2−BD2
<=> (AC−→−−AD−→−)(AC−→−+AD−→−)=(BC−→−−BD−→−)(BC−→−+BD−→−)
<=> 2.DC−→−.AM−→−=2.DC−→−.BM−→−
<=> 2.DC−→−.(AM−→−−BM−→−)=0
<=> 2.DC−→−.AB−→−=0
<=> DC vuông góc với AB
1: Xét ΔABE vuông tại E và ΔACD vuông tại D có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACD
2: Ta có: ΔABE=ΔACD
=>\(\widehat{ABE}=\widehat{ACD}\)
Ta có: \(\widehat{ABE}+\widehat{EBC}=\widehat{ABC}\)
\(\widehat{ACD}+\widehat{DCB}=\widehat{ACB}\)
mà \(\widehat{ABE}=\widehat{ACD};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
3: Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
Ta có: ΔABH vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AB^2-AH^2=BH^2\left(1\right)\)
Ta có: ΔIHB vuông tại H
=>\(HI^2+HB^2=BI^2\)
=>\(HB^2=BI^2-HI^2\left(2\right)\)
Từ (1),(2) suy ra \(AB^2-AH^2=BI^2-HI^2\)
=>\(AB^2+HI^2=BI^2+AH^2\)
Trả lời
Hình đây nha bạn
Bạn hãy sử dụng tính chất của hình vuông nha
Study well
Trước hết, hình thang cân ABCD có 2 đường chéo vuông góc với nhau nên nó là hình vuông.
Do đó H trùng với D ( cùng là đường cao hình thang )
Do đó AH=AD
Mà AB+CD=AD+AD
⇒2AH=AB+CD
⇒\(AH=\frac{AB+CD}{2}\)
Vậy \(AH=\frac{AB+CD}{2}\)