K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

Kẻ đường cao BK

Xét hai tam giác vuông AHD và BKC, ta có:

∠ (AHD) = ∠ (BKC) = 90 0

AD = BC (tỉnh chất hình thang-Cân)

∠ D = ∠ C (gt)

Do đó: ∆ AHD =  ∆ BKC (cạnh huyền, góc nhọn) ⇒ HD = KC.

Hình thang ABKH có hai cạnh bên song song nên AB = HK

a – b = DC – AB = DC – HK = HD + KC = 2HD ⇒ HD = (a – b) / 2

HC = DC – HD = a - (a – b) / 2 = (a + b) / 2

29 tháng 6 2017

Hình thang cân

Hình thang cân

8 tháng 9 2015

A B C D H K b

+) Hình thang ABCD cân => góc ADC = ACD ; AD = BC

Kẻ BK vuông góc với CD

Tam giác vuông  ADH và  tam giác vuông BCK có: AD = BC; góc ADC = ACD => tam giác ADH = BCK ( cạnh huyền - góc nhọn)

=> DH = CK

+) Tứ giác ABKH có: AB// HK; AH// BK => ABKH là hình bình hành => AB = HK = b

=> DH + KC = CD - HK = a - b

=> 2.DH = a - b => HD = (a - b)/2

+) HC = HK + KC = b + (a - b)/2 = (a + b)/ 2

Vậy...

b) Cho a = 26; b = 10; AD= 17 

Áp dụng công thức trên có HD = (26 - 10)/2 = 8 cm

Áp dụng ĐL Pi ta go trong tam giác vuông ADH có: AH2  = AD2 - HD2 = 172 - 82 =  225 => AH = 15 cm

Vậy...

10 tháng 1 2019

Do AB//CD

=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )

  1000 + \(\widehat{D}\)=1800

             \(\widehat{D}\)=1800 - 1000

           \(\widehat{D}\)= 800

Xét tứ giác ABCD có :

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600

1000+1200+\(\widehat{C}\)+800 =3600

 3000 +\(\widehat{C}\)=3600

         \(\widehat{C}\)= 600

2) Từ B kẻ BE \(\perp\)CD

Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:

           AD=BC (tính chất hình thang cân)

          \(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)

=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )

=)  DH= CE (2 cạch tương ứng )

Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB

Xét tứ giác ABEH có

\(\widehat{BAH}\)\(\widehat{AHE}\) = \(\widehat{BEH}\) = 900

=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm

Ta có : DH+HE+EC= 20 cm

         2DH+10=20

         2DH =10

           DH = 5 (cm)

xét tam giác vuông AHD 

Áp dụng định lí Pitago ta có

AD2=AH2+HD2

AD2=122+52

AD2= 144+25=169

AD=13 cm (đpcm)

      

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình