Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao BK
Xét hai tam giác vuông AHD và BKC, ta có:
∠ (AHD) = ∠ (BKC) = 90 0
AD = BC (tỉnh chất hình thang-Cân)
∠ D = ∠ C (gt)
Do đó: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn) ⇒ HD = KC.
Hình thang ABKH có hai cạnh bên song song nên AB = HK
a – b = DC – AB = DC – HK = HD + KC = 2HD ⇒ HD = (a – b) / 2
HC = DC – HD = a - (a – b) / 2 = (a + b) / 2
+) Hình thang ABCD cân => góc ADC = ACD ; AD = BC
Kẻ BK vuông góc với CD
Tam giác vuông ADH và tam giác vuông BCK có: AD = BC; góc ADC = ACD => tam giác ADH = BCK ( cạnh huyền - góc nhọn)
=> DH = CK
+) Tứ giác ABKH có: AB// HK; AH// BK => ABKH là hình bình hành => AB = HK = b
=> DH + KC = CD - HK = a - b
=> 2.DH = a - b => HD = (a - b)/2
+) HC = HK + KC = b + (a - b)/2 = (a + b)/ 2
Vậy...
b) Cho a = 26; b = 10; AD= 17
Áp dụng công thức trên có HD = (26 - 10)/2 = 8 cm
Áp dụng ĐL Pi ta go trong tam giác vuông ADH có: AH2 = AD2 - HD2 = 172 - 82 = 225 => AH = 15 cm
Vậy...
Kẻ đường cao BK và đường cao AH .
Xét tam giác ADC và tam giác BKC có :
\(AD=BC\left(gt\right)\)
\(\widehat{D}=\widehat{C}\)( vì ABCD là hình thang cân )
=> tam giác vuông ADC = tam giác vuông BKC ( cạnh huyền - góc nhọn )
\(\Rightarrow HD=KC=\frac{CD-HK}{2}=\frac{CD-AB}{2}=\frac{a-b}{2}\)
Xét tam giác AHD vuông tại H có :( Py-ta-go )
\(AD^2=AH^2+HD^2\)
\(=\left(\frac{a+b}{2}\right)^2+\left(\frac{a-b}{2}\right)^2\)
\(=\frac{2a^2+2b^2}{4}=\frac{a^2+b^2}{2}\)
Vậy \(AD=\sqrt{\frac{a^2+b^2}{2}}\)
HD = (CD – AB) / 2 = (26 – 10) / 2 = 8 (cm)
Trong tam giác vuông AHD có ∠ (AHD) = 90 0
A D 2 = A H 2 + H D 2 (định lý Pi-ta-go)
⇒ A H 2 = A D 2 - H D 2
A H 2 = 17 2 - 8 2 = 289 – 64 = 225
AH = 15 (cm)
a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)
b) Xem hình vẽ
Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)
Vì ABCD là hình thang cân nên AE = FB = 3.
Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.
\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)