Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(3x-5\right)^{100}+\left(2y-1\right)=0\)
=> \(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}3x-5=0\\2y-1=0\end{cases}}\)=> \(\hept{\begin{cases}3x=5\\2y=1\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{1}{2}\end{cases}}\).
3x + 3x+3 = 756
=> 3x + 3x.33 = 756
=> 3x + 3x.27 = 756
=> 3x.(1 + 27) = 756
=> 3x.28 = 756
=> 3x = 756 : 28
=> 3x = 27 = 33
=> x = 3
5x+1 + 6.5x+1 = 875
=> 5x+1.(1 + 6) = 875
=> 5x+1.7 = 875
=> 5x+1 = 875 : 7
=> 5x+1 = 125 = 53
=> x + 1 = 3
=> x = 3 - 1
=> x = 2
\(\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^{100}}{2014}\right)\)
\(=\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(=\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(=\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...0...\left(27-\frac{3^{2010}}{2014}\right)\)
\(=0\)
Trong tích đó có thừa số \(27-\frac{3^5}{9}=0\)
=> \(\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^{2010}}{2014}\right)=0\)
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)
\(\dfrac{3^0\cdot45^4-15^3\cdot5^{-9}}{27^4\cdot25^3+45^6}\) bạn ơi số to
`#3107`
`(x - 3)^5 = 4(x - 3)^3`
`=> (x - 3)^5 - 4(x - 3)^3 = 0`
`=> (x - 3)^3 * [ (x - 3)^2 - 4] = 0`
`=>`\(\left[{}\begin{matrix}\left(x-3\right)^3=0\\\left(x-3\right)^2-4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^2=4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=\left(\pm2\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x-3=2\\x-3=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=5\\x=1\end{matrix}\right.\)
Vậy, `x \in {1; 3; 5}.`
3^x + 3^x .3^3 =75^6
3 x ( x + x + 3 ) = 75^6
3. (x . 2) + 9 = 75^6
bạn tự làm phần còn lại nhé