Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT <=> 20x2 + 10y2 - 4xy - 76x - 12y + 82 = 0
<=> (19x2 - 76x + 76) + (6y2 - 12y + 6) + (x2 - 4xy + 4y2) = 0
<=> 19(x - 2)2 + 6(y - 1)2 + (x - 2y)2 = 0
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(Pt\Leftrightarrow\sqrt[5]{27}x^{10}+2\sqrt[5]{27}=5x^6\)
Áp dụng bất đẳng thức AM-GM cho 5 số dương:
\(VT=\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\sqrt[5]{27}+\sqrt[5]{27}\ge5\sqrt[5]{\frac{27x^{30}}{27}}=5x^6=VF\)
Dấu = xảy ra khi \(\frac{\sqrt[5]{27}x^{10}}{3}=\sqrt[5]{27}\Leftrightarrow x^{10}=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt[10]{3}\\x=-\sqrt[10]{3}\end{cases}}\)
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
\(\frac{2\cos2x}{1-\sin2x}=0\Leftrightarrow\hept{\begin{cases}\cos2x=0\\1-\sin2x\ne0\end{cases}}\)
\(\cos2x=0\Leftrightarrow2x\pm\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{4}+k\pi\)
Với \(x=\frac{\pi}{4}+k\pi\Rightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\sin2x=\sin\left(\frac{\pi}{2}+k2\pi\right)=1\) vi phạm điều kiện \(1-\sin2x\ne0\)
Do đó ta loại nghiệm \(x=\frac{\pi}{4}+k\pi\) của phương trình cos2x = 0
Vậy \(\frac{2\cos2x}{1-\sin2x}=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi,k\in Z\)
ĐKXĐ: \(x\ge-\dfrac{4}{5}\)
Đặt \(\sqrt{5x+4}=t\ge0\Rightarrow x=\dfrac{t^2-4}{5}\)
Pt trở thành:
\(\dfrac{t^2-4}{5}-t=2\)
\(\Leftrightarrow t^2-5t-14=0\Rightarrow\left[{}\begin{matrix}t=7\\t=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{5x+4}=7\)
\(\Rightarrow5x+4=49\)
\(\Rightarrow x=9\)
Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\), \(0< x< 435\))
y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\), \(0< y< 435\))
Vì hai trường A và B có 435 học sinh dự thi nên ta có PT: \(x+y=435\) (1)
Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có tỉ lệ thi đỗ vào lớp 10 là 87% nên ta có PT: \(85\%x+90\%y=87\%\cdot435\) (2)
Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=435\\85\%x+90\%y=87\%\cdot435\end{cases}}\)
Giải HPT, ta có: \(\hept{\begin{cases}x=261\\y=174\end{cases}}\) (TMĐK)
Vậy trường A có 261 học sinh dự thi và trường B có 174 học sinh dự thi, vào lớp 10.
Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\),\(0< x< 500\))
y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\),\(0< y< 500\))
Vì cả hai trường có 435 thi đỗ vào lớp 10 đạt tỉ lệ là 87% nên ta có PT: \(x+y=\frac{435}{87\%}\) <=> \(x+y=500\) (1)
Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có 435 học sinh thi đỗ vào lớp 10 nên ta có PT: \(85\%x+90\%y=435\) (2)
Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=500\\85\%x+90\%y=435\end{cases}}\)
Giải HPT, ta có: \(\hept{\begin{cases}x=300\\y=200\end{cases}}\) (TMĐK)
Vậy trường A có 300 học sinh dự thi và trường B có 200 học sinh dự thi, vào lớp 10.
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
e ms lớp 8
ai k minh giai cho