K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

\(Pt\Leftrightarrow\sqrt[5]{27}x^{10}+2\sqrt[5]{27}=5x^6\)

Áp dụng bất đẳng thức AM-GM cho 5 số dương: 

\(VT=\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\sqrt[5]{27}+\sqrt[5]{27}\ge5\sqrt[5]{\frac{27x^{30}}{27}}=5x^6=VF\)

Dấu = xảy ra khi \(\frac{\sqrt[5]{27}x^{10}}{3}=\sqrt[5]{27}\Leftrightarrow x^{10}=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt[10]{3}\\x=-\sqrt[10]{3}\end{cases}}\)

7 tháng 5 2017

mk có cách lm = mt chứ tính= tay thì chịu

25 tháng 11 2023

ĐKXĐ: \(x\in R\)

\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)

=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)

=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)

=>x-2=0

=>x=2(nhận)

25 tháng 11 2023

\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)

\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.

NV
26 tháng 7 2021

ĐKXĐ: \(x\ge-\dfrac{4}{5}\)

Đặt \(\sqrt{5x+4}=t\ge0\Rightarrow x=\dfrac{t^2-4}{5}\)

Pt trở thành:

\(\dfrac{t^2-4}{5}-t=2\)

\(\Leftrightarrow t^2-5t-14=0\Rightarrow\left[{}\begin{matrix}t=7\\t=-2< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{5x+4}=7\)

\(\Rightarrow5x+4=49\)

\(\Rightarrow x=9\)

29 tháng 3 2022

1.   3x( x - 2 ) - ( x - 2 ) = 0

<=> ( x-2).(3x-1)  = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)

2.    x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )

<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0

(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )

\(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)

29 tháng 3 2022

\(1. 3x^2 - 7x +2=0\)

=>\(Δ=(-7)^2 - 4.3.2\)

        \(= 49-24 = 25\)

Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:

\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)

\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)

 

  

\(PT\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-5x^2-2\sqrt{5}x-1\)

\(\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-\left(\sqrt{5}x+1\right)^2\)

\(\Rightarrow x+\sqrt{6x^2+6}\le0\)

13 tháng 6 2020

rồi sao nữa

28 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)

=>3<=x<=5

\(\sqrt{x-3}+\sqrt{5-x}=2\)

=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)

=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)

=>x-4=0

=>x=4

10 tháng 9 2016

e mới vào lớp 6 chị ơi

10 tháng 9 2016

a/ PT <=> (x2 - 6x + 9) + (x - \(\sqrt{3x}\)) + (3 - \(\sqrt{3x}\)) = 0

<=> (\(\sqrt{x}-\sqrt{3}\))(\(\sqrt{3}x+x\sqrt{x}-3\sqrt{x}-3\sqrt{3}\)) + √x(\(\sqrt{x}-\sqrt{3}\)) + \(\sqrt{3}\left(\sqrt{3}-\sqrt{x}\right)\)= 0

<=> x = 3

a: \(\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: \(\Leftrightarrow4x^4-9x^2+4x^2-9=0\)

\(\Leftrightarrow4x^2-9=0\)

=>x=3/2hoặc x=-3/2

7 tháng 4 2016
  • 1/ VT<=> x(x+1)(x+4)(3x-5) = 0

,=. x ={0;-1;-4;5/3}