Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Co x+2 chia het cho x+2
3(x+2)=3x+6 chia het cho x+2
Ma 3x+5 chia het cho x+2
\(\Rightarrow\)3x+6-3x-5=1 chia het cho x+2
x+2=1 x=-1
x+2=-1 x=-3
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3
2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2
+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2
=> n.(n + 5) luôn chia hết cho 2
3) A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2
=> A không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
Số số hạng: (99-0):1+1=99(số hạng)
1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2) [vì có 99 số hạng chia hết cho 3]
=31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.
Số số hạng là :
( 99 - 0 ) : 1 + 1 = 99 ( số hạng )
\(1+5+5^2\)\(+...+5^{99}\)\(=\)\(\left(1+5+5^2\right)+5^3\)\(.\)\(\left(1+5+5^2\right)\)\(+\)\(5^6\)\(.\)\(\left(1+5+5^2\right)\)\(+...+\)\(5^{99}\)\(.\)\(\left(1+5+5^2\right)\) ( Vì có 99 số hạng chia hết cho 3 )
\(\Rightarrow\)\(31+5^3\)\(.\)\(31\)\(+\)\(5^6\)\(.\)\(31\)\(+...+\)\(5^{99}\)\(.\)\(31\)
\(=\)\(1+5+5^2\)\(+...+\)\(5^{99}\)\(.\)\(31\)chia hết cho \(31\)
Ta có 5^2020+5^2019+5^2018 = 5^2018*(5^2+5^1+1)
=5^2018*31 chia hết cho 31.
\(5^{2020}+5^{2019}+5^{2018}\)
\(=5^{2018}.25+5^{2018}.5+5^{2018}\)
\(=5^{2018}.\left(25+5+1\right)=5^{2018}.31⋮31\)