Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nửa chu vi miếng đất là:
\(56:2=28m\)
Gọi chiều rộng của miếng đất là \(x\left(0< x< 28\right)\)
\(\rightarrow\)Chiều dài của miếng đất là \(28-x\)
\(\rightarrow\)Chiều rộng miếng đất khi giảm đi 2 mét là \(x-2\)
\(\rightarrow\)Chiều dài miếng đất khi tăng thêm 4 mét là \(28-x+4=32-x\)
Theo đề cho, ta có phương trình sau:
\(\left(x-2\right)\left(32-x\right)-x\left(28-x\right)=8\)
\(\Leftrightarrow32x-x^2-64+2x-28x+x^2=8\)
\(\Leftrightarrow32x-28x+2x-x^2+x^2=64+8\)
\(\Leftrightarrow6x=72\Leftrightarrow x=12\)
Vậy chiều dài của miếng đất là \(28-a=28-12=16m\)
Gọi chiều rộng, chiều dài lần lượt là a,b
Chu vi là 56m nên a+b=56/2=28
Theo đề, ta có hệ:
a+b=28 và (a-2)(b+4)=ab+8
=>a+b=28 và 4a-2b=16
=>a=12 và b=16
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
Gọi CD khu vườn là a (m)
CR khu vườn là b (m) đk: a;b >0
Theo bài, ta có:
\(\left\{{}\begin{matrix}2\left(a+b\right)=56\\\left(a+3\right)\left(b-1\right)=ab+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=28\\3b-a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=19\left(tm\right)\\b=9\left(tm\right)\end{matrix}\right.\)
Vậy.....
gọi chiều rộng hcn là x( ĐK x \(\ne\)0)
Chiều dài hcn là :x+5
Diện tích hcn là :x(x+5)
Vì nếu giảm chiều dài 3m thì chiều dài mới sẽ là :x+5-3 và chiều rộng thêm 2m thì chiều rộng mới là :x+2.Khi đó diện tích giảm đi 16 m^2
Theo đề bài ta có phương trình :
(x+5-3)(x+2)=x(x+5)-16
<=> (x+2)(x+2)=x^2+5x-16
<=>x^2+2x+2x+4=x^2+5x-16
<=>x^2+4x+4=x^2+5x-16
<=>(x^2-x^2)+(4x-5x)=-4-16
<=> - x = -20
<=> x = 20 (t/m điều kiện )
Chiều rộng hcn là :20+5=25 m
Nửa chu vi: \(60:2=30\left(m\right)\)
Gọi chiều dài là x (m) ( 0<x<30 )
=> Chiều rộng là: \(30-x\) ( m )
Diện tích khu vườn đó là: \(x\left(30-x\right)\) \(\left(m^2\right)\)
Theo đề bài ta có pt:
\(\left(20+x\right)\left(30-x-2\right)=x\left(30-x\right)+10\)
\(\Leftrightarrow\left(20+x\right)\left(28-x\right)=x\left(30-x\right)+10\)
\(\Leftrightarrow560-20x+28x-x^2=30x-x^2+10\)
\(\Leftrightarrow-22x=-550\)
\(\Leftrightarrow x=25\left(tm\right)\)
=> Chiều rộng là: \(30-25=5\left(m\right)\)
Vậy chiều dài là: 25m
chiều rộng là 5m
Nửa chu vi là \(60:2=30\left(m\right)\)
Gọi độ dài chiều dài ban đầu là \(x\left(m;0< x< 30\right)\)
Thì chiều rộng ban đầu là \(30-x\left(m\right)\)
Diện tích ban đầu là \(x\left(30-x\right)\)
Chiều dài sau khi tăng thêm 20m là \(x+20\left(m\right)\)
Chiều rộng sau khi giảm 2m là \(30-x-2=28-x\)
Diện tích lúc sau là \(\left(x+20\right)\left(28-x\right)\)
Vì sau khi tăng chiều dài thêm 20m và giảm chiều rộng đi 2m thì diện tích khu vường tăng 10m2 nên ta có phương trình :
\(\left(x+20\right)\left(28-x\right)-x\left(30-x\right)=10\)
\(\Leftrightarrow28x-x^2+560-20x-30x+x^2=10\)
\(\Leftrightarrow-22x=-550\)
\(\Leftrightarrow x=25\left(nhận\right)\)
Vậy chiều dài khu vườn ban đâu là 25m, chiều rộng là 5m
Lời giải:
Gọi chiều dài và chiều rộng HCN lần lượt là $a,b$ (m) với $a>b>0$
Theo bài ra ta có:
\(\left\{\begin{matrix} a+b=\frac{30}{2}=15\\ (a+4)(b+2)=ab+46\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=15\\ 2a+4b=38\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=15\\ a+2b=19\end{matrix}\right.\Rightarrow b=19-15=4; a=15-b=11\)
Vậy HCN ban đầu có chiều dài $11$ m, chiều rộng $4$ m