K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

\(ad=bc=>\frac{a}{c}=\frac{b}{d}=>\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}=\frac{a^{2003}-b^{2004}}{c^{2004}-d^{2004}}=\frac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\)

=>\(\frac{a^{2003}-b^{2004}}{c^{2004}-d^{2004}}=\frac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\)

=>\(\frac{a^{2003}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)

25 tháng 10 2015

\(ad=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}\)

\(\Rightarrow\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}=\frac{a^{2004}-b^{2004}}{c^{2004}-d^{2004}}=\frac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\)

\(\Rightarrow\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\left(đpcm\right)\)

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)

\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)

Từ (1) và (2) => đpcm

b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)

\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)

Từ (1) và (2) => đpcm

6 tháng 9 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> \(\dfrac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(4k^4+5\right)}=\dfrac{b^4}{d^4}\)(1)

\(\dfrac{a^2b^2}{c^2d^2}=\dfrac{k^2b^2b^2}{k^2d^2d^2}=\dfrac{b^4}{d^4}\)(2)

Từ (1) và (2) suy ra: \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)

b.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

=> \(\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (1)

\(\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)

6 tháng 9 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\dfrac{b^4\left(4k^4+5\right)}{d^4\left(k^4+5\right)}=\dfrac{b^4}{d^4}\\\dfrac{a^2b^2}{c^2d^2}=\dfrac{bk^2b^2}{dk^2d^2}=\dfrac{k^2b^4}{k^2d^4}=\dfrac{b^4}{d^4}\end{matrix}\right.\)

Vậy.....

\(\left\{{}\begin{matrix}\dfrac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\\\dfrac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\end{matrix}\right.\)

Vậy....

17 tháng 8 2018
Giúp mình với Mai đi học rồi
17 tháng 8 2018

mik ko biết sao giúp

16 tháng 3 2017

a)\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)

Tại \(x=2006\) thì giá trị biểu thức \(A\) là:

\(A=2006^6-2007\cdot2006^5+...-2007\cdot2006+2007\)

\(=2006^6-\left(2006+1\right)\cdot2006^5+...-\left(2006+1\right)\cdot2006+2007\)

\(=2006^6-2006^6+2006^5-...-2006^2-2006+2007\)

\(=-2006+2007=1\)

b)Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Khi đó

\(VT=\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(1\right)\)

\(VP=\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(2\right)\)

Từ \((1) và (2)\) ta có điều phải chứng minh

c)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2004\right|+\left|x-1\right|=\left|2004-x\right|+\left|x-1\right|\)

\(\ge\left|2004-x+x-1\right|=2003\)

Đẳng thức xảy ra khi \(1\le x\le2004\)

Vậy với \(1\le x\le2004\) thì \(A_{Min}=2003\)

16 tháng 3 2017

Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Áp dụng vào bài toán \(\left|x-2004\right|+ \left|x-1\right|\ge\left|x-2004+1-x\right|=2003\)

Dấu "=" xảy ra khi \(\left(x-2004\right)\left(1-x\right)\ge0\)

.....

17 tháng 8 2018

Huhu chúng ta cùng cảnh  ngộ

18 tháng 8 2018

uk . mk thấy bạn đăng nhưng ko ai trả lời thì mk đăng hộ vs cả bài này mk cũng biết làm hihi