\(\frac{a}{b}=\frac{c}{d}\)

CMR:\(\frac{a^{2004}-b^{2004}}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)

\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)

Từ (1) và (2) => đpcm

b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)

\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)

Từ (1) và (2) => đpcm

2 tháng 1 2017

Đặt \(\frac{a}{2003}\) = \(\frac{b}{2004}\) = \(\frac{c}{2005}\) = k

=> a = 2003k; b = 2004k và c = 2005k

Xét hiệu:

4(a - b)(b - c) - (c - a)2

= 4(2003k - 2004k)(2004k - 2005k) - (2005k - 2003k)2

= 4(-k)(-k) - (2k)2

= 4k2 - 22.k2

= 4k2 - 4k2 = 0

Do đó 4(a - b)(b - c) = (c - a)2.

2 tháng 1 2017

Bạn học trường nào vậy Mk thay cai bài này la cua huyện mk nên hỏi vây thôi

3 tháng 3 2018

Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)

\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)

3 tháng 3 2018

Đặt a/2003=b/2004=c/2005=k

Suy ra a=2003k, b=2004k, c=2005k            (*)

Thay (*) vào 4(a-b)(b-c) ta được:

4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)

              =4k(2003-2004).k(2004-2005)=4k2 .-1.-1

              =4.k2                                                           (1)

Thay (*) vào (c-a)2 ta được:

(c-a)2 =(2005k-2003k)2

= k2 (2005-2003)2

=k2 .4                                                              (2)

Từ (1) và (2)

Suy ra ĐPCM

nha

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

19 tháng 10 2016

\(\frac{a}{2003}=\frac{b}{2004}=\frac{a-b}{2003-2004}=-\left(a-b\right)\) = -(b-c)=\(\frac{c-a}{2}\)

=> -(a-b).(-(b-c)=\(\frac{c-a}{2}.\frac{c-a}{2}=\frac{\left(c-a\right)^2}{4}\)

<=> 4.(a-b).(b-c)=(c-a)2

26 tháng 10 2020

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\left(k\ne0\right)\)

\(\Rightarrow a=2003k\)\(b=2004k\)\(c=2005k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

Mặt khác ta có: \(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( đpcm )