Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 )
và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)
mà một số chẵn thì luôn luôn chia hết cho 2
suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh )
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Ta có trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)
a)Gọi 2 số tự nhiên liên tiếp đó là a và b
Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn
=> ab chia hết cho 2
Vậy.............................
b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2 ( k \(\in\) N)
Mà 3k luôn chia hết cho 3
=> 3k(3k+1)(3k+2) luôn chia hết cho 3
Vậy......................................
a . Ta có : Vì hai số liên tiếp chiaheets cho 2
=> số lẻ x số chẵn sẽ chia hết cho 2
vì 1 số chẵn x bất kì số nào cũng là số chẵn
câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2
và
1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn
=> 2 số tự nhiên liên tiếp chia ht cho 2
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
a) Gọi 2 số tự nhiện liên tiếp là n; n+1
Ta có:
Nếu n có dạng 2k thì n.(n+1)
= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)
Nếu n có dạng 2k + 1 thì n.(n+1)
= (2k+1).(2k+1+1)
= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)
b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2
Ta có:
Nếu n có dạng 3k thì n.(n+1).(n+2)
= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)
Nếu n có dạng 3k+1 thì n.(n+1).(n+2)
= (3k+1).(3k+1+1).(3k+2+1)
= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3)
Nếu n có dạng 3k+2 thì n.(n+1).(n+2)
= (3k+2).(3k+2+1).(3k+2+2)
= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3)
Gọi hai số cần tìm là a , a + 1
Vậy a.(a + 1) = 2a + a = 3a
mình sẽ đặt câu hỏi mới