Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :
\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)
Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)
Mặt khác, ta lại có :
\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)
\(\Leftrightarrow2\log^2_23-5\log_23+2<0\)
\(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)
Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)
Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)
Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)
b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm.
Áp dụng bất đẳng thức Cauchy ta có
\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)
Suy ra
\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
Mặt khác :
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)
Từ đó ta thu được :
\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)
c) Ta chứng minh bài toán tổng quát :
\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1
Thật vậy,
\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\)
suy ra :
\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)
\(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)
Áp dụng bất đẳng thức Cauchy ta có :
\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)
Do đó ta có :
\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1
Ta xét 3 trường hợp :
* Nếu \(x>4\) thì \(x-3>1\Rightarrow\left(x-3\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.
* Nếu \(x< 3\) thì \(x-4< -1\Rightarrow\left(x-4\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.
* Nếu \(3< x< 4\) thì \(x-3>1\Rightarrow\left|x-3\right|,\left|x-4\right|\le1\Rightarrow\left(x-3\right)^{2010}< \left(x-3\right),\left(x-4\right)^{2012}\le\left(4-x\right)\)
Do đó \(\left(x-3\right)^{2010}+\left(x-4\right)^{2012}< \left(x-3\right)+\left(4-x\right)=1\) cũng mâu thuẫn
Mặt khác, với \(x=3;x=4\) thì đẳng thức đúng. Vậy ta có điều phải chứng minh
a) Ta có
\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)
Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :
\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)
hay
\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)
b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :
\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)
Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :
\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)
\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)
\(\Rightarrow lgc=\frac{1}{1-lga}\)
Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)
a) Xét \(n>2\), ta có \(I_n=\int\limits^{\dfrac{\pi}{2}}_0\sin^{n-1}x.\sin xdx\)