K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

1/2(∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 136o = 44o

Suy ra ∠A + ∠B = 2.44o = 88o

∠C = 180o − 88o = 92o

Vậy ∠(ACM) = ∠(BCM) = 92o : 2o = 46o

5 tháng 1 2018

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.

Suy ra ∠A + ∠B = 138o

Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.

Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.

25 tháng 5 2017

A B C M A1 B1

b,

Trong \(\Delta\) AMB có:

\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)

Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)

=> \(\widehat{BAC}+\widehat{ABC}=88^0\)

Trong \(\Delta ABC\) có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Rightarrow\widehat{ACB}=92^0\)

Ta lại có: hai đường phân giác \(\text{AA}_1\)\(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác

=> CM là phân của của \(\widehat{C}\)

=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)

b,

Tương tự câu a, ta tìm được:

\(\widehat{ACM}=\widehat{BCM}=21^0\)

15 tháng 12 2018

Gọi giao điểm của CM và AB là C1. Ta cần chứng minh CC1 ⊥ AB và C1 là trung điểm của đoạn thẳng AB. Vì trong một tam giác ba đường cao đồng quy nên CM hay CC1 vuông góc với AB.

+) Do tam giác ABC cân tại C có CM là đường cao nên CM đồng thời là đường trung trực của đoạn thẳng AB ( tính chất tam giác cân).

24 tháng 1 2017

Sao cau b kho the,ban?

24 tháng 1 2017

Cagggjjccfhgdyhj

23 tháng 8 2019

Ko

Bt 

Lm

23 tháng 8 2019

a)Xét tam giác ABD và tam giác BE 

\(\widehat{ADE=}\widehat{AEC=}90^o\)

AB =AC tam giác chung 

Vậy A chung ss...

=>Tam giác AD =A vuông tại E(cạnh huyền góc nhọn)

Vậy đường thẳng trên khác biệc mỗi 90* 

b) Phân tích tam giác ABM

Ta có ABM gọi chung là H

Vậy thì trong đoạn trên H:

\(\widehat{HAB}=\widehat{HAC}\)(vuông tại A)

Vuông tại AC=AB (tam gs cân tại AB

Tam giác AHB =AHC (cân tại A) 

=> Tam giác ABC =AHC (c.g.c)

Vậy : AMB = ACM

c)

Không ghi lại phần trình bày tất cả :

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

tam giác ABC cân tại A

\(=>AMB=\frac{180-\widehat{A}}{4}\)(gấp đôi 1 phần)

_Đi qua đi lại xin 1 k thoi nha :>_

a: góc ABC=góc ACB=(180-50)/2=65 độ

b: Xét ΔAMB và ΔANC có

AM=AN

góc BAM chung

AB=AC

=>ΔAMB=ΔANC

10 tháng 3 2018

đừng chơi với ngu vip

a) Xét ΔABM vuông tại B và ΔACM vuông tại M có 

AM chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)