Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).
Suy ra: ∠C = 180º – (∠A + ∠B)
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.
Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.
Suy ra ∠A + ∠B = 138o
Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.
Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.
Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).
Suy ra: ∠C = 180º – (∠A + ∠B)
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.
1/2(∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 136o = 44o
Suy ra ∠A + ∠B = 2.44o = 88o
∠C = 180o − 88o = 92o
Vậy ∠(ACM) = ∠(BCM) = 92o : 2o = 46o
\(\widehat{MBA}=90^0-55^0=35^0\)
\(\widehat{MAB}=90^0-67^0=23^0\)
Do đó: \(\widehat{AMB}=122^0\)
Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó;ΔEBC=ΔDCB
Suy ra: \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)
=>\(\widehat{ACB}=\widehat{ABC}=70^0\)
hay \(\widehat{BAC}=40^0\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
a)Xét tam giác ABD và tam giác BE
\(\widehat{ADE=}\widehat{AEC=}90^o\)
AB =AC tam giác chung
Vậy A chung ss...
=>Tam giác AD =A vuông tại E(cạnh huyền góc nhọn)
Vậy đường thẳng trên khác biệc mỗi 90*
b) Phân tích tam giác ABM
Ta có ABM gọi chung là H
Vậy thì trong đoạn trên H:
\(\widehat{HAB}=\widehat{HAC}\)(vuông tại A)
Vuông tại AC=AB (tam gs cân tại AB
Tam giác AHB =AHC (cân tại A)
=> Tam giác ABC =AHC (c.g.c)
Vậy : AMB = ACM
c)
Không ghi lại phần trình bày tất cả :
\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
tam giác ABC cân tại A
\(=>AMB=\frac{180-\widehat{A}}{4}\)(gấp đôi 1 phần)
_Đi qua đi lại xin 1 k thoi nha :>_
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phần giác của góc A)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)
b) Ta có: \(\Delta AMB=\Delta AMC\)(theo a)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Lại có: \(IH\perp BC\Rightarrow AM//IH\)
\(\Rightarrow\widehat{BIH}=\widehat{BAM}\)(2 gó so le trong)
Mà \(\widehat{BAM}=\frac{1}{2}\cdot\widehat{BAC}\)(AM là tia p/g của góc A)
\(\Rightarrow\widehat{BIH}=\frac{1}{2}\cdot\widehat{BAC}\)
hay \(\widehat{BAC}=2\widehat{BIH}\)
nhanh lên mình cần gấp lắm
giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu
b,
Trong \(\Delta\) AMB có:
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)
\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)
Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)
=> \(\widehat{BAC}+\widehat{ABC}=88^0\)
Trong \(\Delta ABC\) có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=92^0\)
Ta lại có: hai đường phân giác \(\text{AA}_1\) và \(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác
=> CM là phân của của \(\widehat{C}\)
=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)
b,
Tương tự câu a, ta tìm được:
\(\widehat{ACM}=\widehat{BCM}=21^0\)