K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

A B C M A1 B1

b,

Trong \(\Delta\) AMB có:

\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)

Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)

=> \(\widehat{BAC}+\widehat{ABC}=88^0\)

Trong \(\Delta ABC\) có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Rightarrow\widehat{ACB}=92^0\)

Ta lại có: hai đường phân giác \(\text{AA}_1\)\(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác

=> CM là phân của của \(\widehat{C}\)

=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)

b,

Tương tự câu a, ta tìm được:

\(\widehat{ACM}=\widehat{BCM}=21^0\)

5 tháng 1 2018

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.

Suy ra ∠A + ∠B = 138o

Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.

Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.

11 tháng 3 2017

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

1/2(∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 136o = 44o

Suy ra ∠A + ∠B = 2.44o = 88o

∠C = 180o − 88o = 92o

Vậy ∠(ACM) = ∠(BCM) = 92o : 2o = 46o

\(\widehat{MBA}=90^0-55^0=35^0\)

\(\widehat{MAB}=90^0-67^0=23^0\)

Do đó: \(\widehat{AMB}=122^0\)

Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó;ΔEBC=ΔDCB

Suy ra: \(\widehat{MCB}=\widehat{MBC}\)

hay ΔMBC cân tại M

=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)

=>\(\widehat{ACB}=\widehat{ABC}=70^0\)

hay \(\widehat{BAC}=40^0\)

Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)

Xét ΔIBC có

\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)

\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)

23 tháng 8 2019

Ko

Bt 

Lm

23 tháng 8 2019

a)Xét tam giác ABD và tam giác BE 

\(\widehat{ADE=}\widehat{AEC=}90^o\)

AB =AC tam giác chung 

Vậy A chung ss...

=>Tam giác AD =A vuông tại E(cạnh huyền góc nhọn)

Vậy đường thẳng trên khác biệc mỗi 90* 

b) Phân tích tam giác ABM

Ta có ABM gọi chung là H

Vậy thì trong đoạn trên H:

\(\widehat{HAB}=\widehat{HAC}\)(vuông tại A)

Vuông tại AC=AB (tam gs cân tại AB

Tam giác AHB =AHC (cân tại A) 

=> Tam giác ABC =AHC (c.g.c)

Vậy : AMB = ACM

c)

Không ghi lại phần trình bày tất cả :

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

tam giác ABC cân tại A

\(=>AMB=\frac{180-\widehat{A}}{4}\)(gấp đôi 1 phần)

_Đi qua đi lại xin 1 k thoi nha :>_

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:

          AB = AC (gt)

          \(\widehat{BAM}=\widehat{CAM}\)(AM là tia phần giác của góc A)

          AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)

b) Ta có: \(\Delta AMB=\Delta AMC\)(theo a)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM\perp BC\)

Lại có: \(IH\perp BC\Rightarrow AM//IH\)

\(\Rightarrow\widehat{BIH}=\widehat{BAM}\)(2 gó so le trong)

Mà \(\widehat{BAM}=\frac{1}{2}\cdot\widehat{BAC}\)(AM là tia p/g của góc A)

\(\Rightarrow\widehat{BIH}=\frac{1}{2}\cdot\widehat{BAC}\)

hay \(\widehat{BAC}=2\widehat{BIH}\)

9 tháng 10 2023

nhanh lên mình cần gấp lắm

giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu

9 tháng 10 2023

Chịu lớp6

Chịu