K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)

Xét ΔIBC có

\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)

\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)

6 tháng 2 2019

a, Chứng minh tam giác ADB=tam giác ADC

=>góc BAD=góc CAD=>AD là tia phân giác của góc BAC=>góc BAD=góc CAD=10độ

b, Do tam giác ABC cân tại A và tam giác DCB đều nên góc ABC=(180độ-20độ):2= 80độ;góc DBC= 60độ

=> góc ABD=80 độ - 60 độ=20độ

Tia BM là tia phân giác của góc ABD=> góc ABM=góc DBM=10độ

Chứng minh được tam giác ABM = tam giác BAD(g.c.g) => AM=BD mà BD =BC nên AM=BC (đpcm)

Câu hỏi của Lê Hà - Toán lớp 7 | Học trực tuyến

5 tháng 5 2019

bằng 3

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.a) Chứng minh: ED=ECb) Chứng minh: \(EK\perp DC\)Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần...
Đọc tiếp

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC

2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.

a) Chứng minh: ED=EC

b) Chứng minh: \(EK\perp DC\)

Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần làm phần b) giúp mình thôi nhé! Nếu có sai sót thì các bạn sửa giúp mình. Thanks! 

1) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(90^o+60^o+\widehat{ACB}=180^o\)

\(150^o+\widehat{ACB}=180^o\)

\(\widehat{ACB}=180^o-150^o\)

Vậy \(\widehat{ACB}=30^o\)

Mà CM là tia phân giác góc \(\widehat{ACB}\)nên:

\(\widehat{ACM}=\widehat{MCB}=\frac{\widehat{ACB}}{2}=\frac{30^o}{2}=15^o\)

Vậy \(\widehat{ACM}=\widehat{MCB}=15^o\)

Xét \(\Delta AMC\)có:

\(\widehat{BAC}+\widehat{AMC}+\widehat{ACM}=180^o\)

\(90^o+\widehat{AMC}+15^o=180^o\)

\(105^o+\widehat{AMC}=180^o\)

\(\widehat{AMC}=180^o-105^o\)

Vậy \(\widehat{AMC}=75^o\)

2) a) Xét \(\Delta ADE\)và \(\Delta CKE\) có:

AE=CE (E là tia phân giác cạnh AC)

\(\widehat{DEA}=\widehat{KEC}\) (đối đỉnh)

\(\widehat{C}\): Cạnh chung

Vậy \(\Delta ADE=\Delta CKE\) (g-c-g)

Suy ra: ED=EC (hai cạnh tương ứng)

b) Chứng minh: \(EK\perp DC\)

1
17 tháng 12 2018

Xét tg BDK,có:

BD=BC(gt)

DE=CE(theo phần a)

DK=CK(gt)

=>B,E,K thẳng hàng

và BK là đưòng trung trực của tg BDK

mà \(K\in DC\)

=>BK \(\perp\)DC hay \(KE\perp DC\)

hay EK 

7 tháng 11 2019

A B C D 1 2

Do \(\widehat{B}=\widehat{C};\widehat{A_1}=\widehat{A_2}\Rightarrow\widehat{BDA}=\widehat{CDA}\)

\(\Rightarrow\Delta ABD=ACD\left(g.c.g\right)\Rightarrow AB=AC\)

19 tháng 10 2019

KHÙNG

19 tháng 10 2019

ừ thì ko cần vẽ hình nữa

4 tháng 12 2019

Xét \(\Delta AIC\)\(\Delta ABC\)Ta có : \(\frac{A}{2}+\frac{C}{2}+I=A+B+C=180^0\)

\(=>A+B+C-\frac{A}{2}-\frac{C}{2}-I=0\)

\(=>\frac{A}{2}+\frac{C}{2}+B-I=0\)

Vì \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\)(Nửa tam giác)

\(=>\frac{A}{2}+\frac{C}{2}+\frac{B}{2}+\frac{B}{2}-I=0\)

\(=>90^0+30^0=I\)

\(=>I=120^0\)Hay \(AIC=120^0\)