Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-7)(x-5)(x-4)(x-2)=72
<=> (x-7)(x-2)(x-5)(x-4)=72
<=> (x^2-9x+14)(x^2-9x+20)=72
đặt t=x^2-9x+17 (1)
pt trở thành
(t-3)(t+3)=72
<=> t^2-81=0<=> t^2=81<=> t=9 hoặc t=-9
thế t vào (1)
th1 x^2-9x+17=9
<=> x^2-9x+8=0
giải pt => x=8 hoặc x=1
th2 x^2-9x+17=-9
<=> x^2-9x+26=0
giải pt => pt vô nghiệm
S={8;1}
Nguyen Quang Trung copy bài của kagamine rin len trên olm mà đc hoc24 tick là sao>???
Ta có (x-7)(x-2)(x-5)(x-4)=72
<=> (x2-9x+14)(x2-9x+20)=72
Đặt x2-9x+14 = t (đk t>0)
=> t(t+6) - 72 = 0
=> t1=6 (thỏa mãn) và t2 = -12 (loại)
Khi t=6 => x2-9x+14 = 6
=> x1 = 8 ; x2 = 1
\(\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)\)
\(\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)
Đặt : \(x^2-9x+14=t\left(t>0\right)\)
\(\Rightarrow t\left(t+6\right)-72=0\Rightarrow t_1=6\left(tm\right)'t_2=-12\left(loại\right)\)
Với : \(t=6\Rightarrow x^2-9x+14=6\)
\(\Rightarrow x_1=8;x_2=1\)
a. (x-1)x(x+1)(x+2)=24
[(x-1)(x+2)].[x(x+1)]=24
(\(x^2\)+2x-x-2)(\(x^2\)+x)=24
(\(x^2\)+x-2)(\(x^2\)+x)=24
[(\(x^2\)+x-1)-1].[(\(x^2\)+x-1)+1]=24
\(\left(x^2+x-1\right)^2\)-1=24
\(\left(x^2+x-1\right)^2\)=25
\(\left(x^2+x-1\right)^2\)=\(5^2\) hoặc\(\left(x^2+x-1\right)^2\)=\(\left(-5\right)^2\)
\(x^2\)+x-1=5 hoặc \(x^2\)+x-1=-5
\(x^2\)+x-6=0 hoặc \(x^2\)+x+4=0(vô nghiệm)
\(\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
Vậy x=2 hoặc x=-3
a)(x-1)x=x2-x
(x+1)(x+2)=x(x+2)+(x+2)=x2+2x+x+2=x2+3x+2
=>(x-1)x(x+1)(x+2)=(x2-x)(x2+3x+2)=x2(x2+3x+2)-x(x2+3x+2)=x4+3x3+2x2-x3-3x2-2x
=x4+2x3-x2-2x
mà (x-1)x(x+1)(x+2)=24
nên x4+2x3-x2-2x=24
x3(x+2)-x(x+2)=24
(x3-x)(x+2)=24
Ta xét bảng sau:
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 8 | -8 | 12 | -12 | 24 | -24 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 2 | -6 | 4 | -8 | 6 | -10 | 10 | -14 | 22 | -26 |
x3-x | 24 | -24 | 12 | -12 | 8 | -8 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 2 |
(ô trống là loại)
Vậy x=2, hờ hờ, t làm tầm bậy, không theo phương trình gì hết
(x-7)(x-2)(x-5)(x-4)=72
(x^2-9x+14)(x^2-9x+20)=72
đặt x^2-9x+14=t (t>0)
=> t(t+6)-72=0 =>t1=6 (tm) ' t2=-12 (loại)
với t=6 => x^2-9x+14=6
=> x1=8 ; x2=1
\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
\(\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)=72\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)-72=0\)
\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)
Đặt \(x^2-9x+17=t\)
\(\Rightarrow\left(t-3\right)\left(t+3\right)-72=0\)
\(\Leftrightarrow t^2-9-72=0\)\(\Leftrightarrow t^2-81=0\)
\(\Leftrightarrow\left(t-9\right)\left(t+9\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t-9=0\\t+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\end{cases}}\)
TH1: \(t=-9\)\(\Leftrightarrow x^2-9x+17=-9\)
\(\Leftrightarrow x^2-9x+26=0\)( vô nghiệm )
TH2: \(t=9\)\(\Leftrightarrow x^2-9x+17=9\)\(\Leftrightarrow x^2-9x+8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=8\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{1;8\right\}\)
1. Đặt $x^2+x=a$ thì pt trở thành:
$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$
$\Leftrightarrow (a-2)(a+6)=0$
$\Leftrightarrow a-2=0$ hoặc $x+6=0$
$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$
Dễ thấy $x^2+x+6=0$ vô nghiệm.
$\Rightarrow x^2+x-2=0$
$\Leftrightarrow (x-1)(x+2)=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
2.
$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$
$\Leftrightarrow (x^2+x)(x^2+x-2)=24$
$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)
$\Leftrightarrow a^2-2a-24=0$
$\Leftrightarrow (a+4)(a-6)=0$
$\Leftrightarrow a+4=0$ hoặc $a-6=0$
$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$
Nếu $x^2+x+4=0$
$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)
Nếu $x^2+x-6=0$
$\Leftrightarrow (x-2)(x+3)=0$
$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$
(x-7)(x-5)(x-4)(x-2)=72
<=> (x-7)(x-2)(x-5)(x-4)=72
<=> (x^2-9x+14)(x^2-9x+20)=72
đặt t=x^2-9x+17 (1)
pt trở thành
(t-3)(t+3)=72
<=> t^2-81=0<=> t^2=81<=> t=9 hoặc t=-9
thế t vào (1)
th1 x^2-9x+17=9
<=> x^2-9x+8=0
giải pt => x=8 hoặc x=1
th2 x^2-9x+17=-9
<=> x^2-9x+26=0
giải pt => pt vô nghiệm
S={8;1}
\(\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)\)
\(\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)
Đặt : \(x^2-9x+14=t\left(t>0\right)\)
\(\Rightarrow t\left(t+6\right)-72=0\Rightarrow t_1=6\left(tm\right)'t_2=-12\)(loại)
Với \(t=6\Rightarrow x^2-9x+14=6\)
\(\Rightarrow x_1=8;x_2=1\)