K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 6 2020

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+4}+\sqrt{3\left(2x-1\right)^2+16}=6\)

Do \(\left(2x-1\right)^2\ge0\Rightarrow VT\ge\sqrt{0+4}+\sqrt{3.0+16}=6\)

Dấu "=" xảy ra khi và chỉ khi \(\left(2x-1\right)^2=0\)

\(\Rightarrow x=\frac{1}{2}\)

NV
17 tháng 11 2019

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[4]{1-x}=a\\\sqrt[4]{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}0\le a;b\le1\\a+b=1\\a^4+b^4=1\end{matrix}\right.\)

Do \(0\le a;b\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a\\b^4\le b\end{matrix}\right.\) \(\Rightarrow a^4+b^4\le a+b=1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a+b=1\\a^4=a\\b^4=b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;0\right);\left(0;1\right)\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt[4]{x}=1\\\sqrt[4]{x}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

b/ Đặt \(4x^2-4x+5=a>0\) ta được:

\(\sqrt{a}+\sqrt{3a+4}=6\)

\(\Leftrightarrow4a+4+2\sqrt{3a^2+4a}=36\)

\(\Leftrightarrow\sqrt{3a^2+4a}=16-2a\) (\(a\le8\))

\(\Leftrightarrow3a^2+4a=4a^2-64a+256\)

\(\Leftrightarrow a^2-68a+256=0\Rightarrow\left[{}\begin{matrix}a=4\\a=64\left(l\right)\end{matrix}\right.\)

\(\Rightarrow4x^2-4x+5=4\Leftrightarrow\left(2x-1\right)^2=0\)

18 tháng 11 2019

b)Ta có:

\(\sqrt{4x^2-4x+5}+\sqrt{12x^2-12x+19}=6\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}=6\)

\(\sqrt{\left(2x-1\right)^2+2^2}\ge2\) \(\sqrt{3\left(2x-1\right)^2+4^2}\ge4\)

nên \(\sqrt{\left(2x-1\right)^2+2^2}+\sqrt{3\left(2x-1\right)^2+4^2}\ge6\)

Vậy PT \(\left\{{}\begin{matrix}\sqrt{\left(2x-1\right)^2+2^2}=2\\\sqrt{3\left(2x-1\right)^2+4^2}=4\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{1}{2}\)

3: Ta có: \(\sqrt{4x+1}=x+1\)

\(\Leftrightarrow x^2+2x+1=4x+1\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)

\(\Leftrightarrow3\sqrt{x-1}=15\)

\(\Leftrightarrow x-1=25\)

hay x=26

5: Ta có: \(\sqrt{4x^2-12x+9}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

NV
26 tháng 9 2020

\(\Leftrightarrow\sqrt{3\left(2x+1\right)^2+4}+\sqrt{\left(2x+1\right)^2}+\left(2x+1\right)^2=2\)

Do \(\left\{{}\begin{matrix}\sqrt{3\left(2x+1\right)^2+4}\ge2\\\sqrt{\left(2x+1\right)^2}\ge0\\\left(2x+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow VT\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

Pt có nghiệm duy nhất \(x=-\frac{1}{2}\)

5 tháng 7 2019

Em thử nhá, ko chắc đâu

ĐK: \(x\ge\frac{3}{4}\)

PT \(\Leftrightarrow4x^2+12x-9-7x\sqrt{4x-3}=0\)

\(\Leftrightarrow4x^2-9x-9-7x\left(\sqrt{4x-3}-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(4x+3\right)-\frac{28x\left(x-3\right)}{\sqrt{4x-3}+3}=0\)

\(\Leftrightarrow\left(x-3\right)\left(4x+3-\frac{28x}{\sqrt{4x-3}+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\4x+3=\frac{28x}{\sqrt{4x-3}+3}\left(1\right)\end{matrix}\right.\)

Giải (1): \(\Leftrightarrow\left(4x+3\right)\sqrt{4x-3}-16x+9=0\)

\(\Leftrightarrow\left(4x+3\right)\left(\sqrt{4x-3}-1\right)-12\left(x-1\right)=0\)

\(\Leftrightarrow\frac{4\left(x-1\right)\left(4x+3\right)}{\sqrt{4x-3}+1}-12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\frac{4\left(4x+3\right)}{\sqrt{4x-3}+1}-12\right]=0\)

Nhận xét rằng cái ngoặc to luôn > 0 với mọi \(x\ge\frac{3}{4}\). Suy ra x = 1

Vậy tập hợp nghiệm của pt: S = {1;3}

7 tháng 9 2019

Cách 2:

ĐK: \(x\ge\frac{3}{4}\)

\(4x^2+12x-9-7x\sqrt{4x-3}=0\)

\(\Leftrightarrow4x^2-16x+12+7\left[\left(4x-3\right)-x\sqrt{4x-3}\right]=0\)

\(\Leftrightarrow4\left(x-1\right)\left(x-3\right)-7\sqrt{4x-3}\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(4-\frac{7\sqrt{4x-3}}{x+\sqrt{4x-3}}\right)=0\)

Cái ngoặc to phía sau \(=\frac{4x-3\sqrt{4x-3}}{MS>0}=\frac{16x^2-36x+27}{\left(4x+3\sqrt{4x-3}\right).MS>0}>0\) cái ngoặc to vô nghiệm

Do đó x = 1 (Thỏa mãn) hoặc x = 3 (thỏa mãn)

Ngắn gọn hơn nhỉ:)