Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiểm tra lại đề câu a, \(...+24\) thì pt vô nghiệm, phải là \(...-24\) mới có lý
b/ \(x^2-\left(y+1\right)x+y^2-y-2=0\) (1)
\(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)
\(\Leftrightarrow-3y^2+6y+9\ge0\)
\(\Leftrightarrow-1\le y\le3\Rightarrow y=\left\{-1;0;1;2;3\right\}\)
Thay lần lượt vào pt ban đầu để tìm x nguyên
ĐKXĐ: ...
\(\Leftrightarrow x^2+\left(x^2+8x\right)+\left(14-2\sqrt{x^2+8x}\right)x-14\sqrt{x^2+8x}+24=0\)
Đặt \(\sqrt{x^2+8x}=a\ge0\) pt trở thành:
\(x^2+a^2+\left(14-2x\right)x-14a+24=0\)
\(\Leftrightarrow x^2-2ax+a^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a\right)^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a+2\right)\left(x-a+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x+2\\a=x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=x+2\left(x\ge-2\right)\\\sqrt{x^2+8x}=x+12\left(x\ge-12\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x=x^2+4x+4\\x^2+8x=x^2+24x+144\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
a) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)
Vậy ...
\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\)
\(D=x-4+\sqrt{16-8x+x^2}=x-4+\left|4-x\right|=x-4+x-4=2x-8\)
\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)
\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)
\(\left\{{}\begin{matrix}16-x^2\ge0\\2x+1>0\\x^2-8x+14\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}< x\le4-\sqrt{2}\)
xác định \(< =>\left\{{}\begin{matrix}\sqrt{16-x^2}\ge0\\\sqrt{2x+1}>0\\\sqrt{x^2-8x+14}\ge0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4_{ }+\sqrt{2}\end{matrix}\right.\\\end{matrix}\right.\)\(< =>-\dfrac{1}{2}< x\le4-\sqrt{2}\)
Lời giải:
ĐKXĐ:............
PT \(\Leftrightarrow 2x^2+14x-2x\sqrt{x^2+8x}+8x-14\sqrt{x^2+8x}+24=0\)
\(\Leftrightarrow (x^2+8x)+(x^2+14x+49)-2(x+7)\sqrt{x^2+8x}-25=0\)
\(\Leftrightarrow (x^2+8x)+(x+7)^2-2(x+7)\sqrt{x^2+8x}-25=0\)
\(\Leftrightarrow (\sqrt{x^2+8x}-x-7)^2-25=0\)
\(\Leftrightarrow (\sqrt{x^2+8x}-x-12)(\sqrt{x^2+8x}-x-2)=0\)
Nếu \(\sqrt{x^2+8x}-x-12=0\)
\(\Leftrightarrow \sqrt{x^2+8x}=x+12\Rightarrow \left\{\begin{matrix} x+12\geq 0\\ x^2+8x=(x+12)^2\end{matrix}\right.\)
\(\Rightarrow x=-9\) (thỏa mãn)
Nếu \(\sqrt{x^2+8x}-x-2=0\Leftrightarrow \sqrt{x^2+8x}=x+2\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ x^2+8x=(x+2)^2\end{matrix}\right.\Rightarrow x=1\) (thỏa mãn)
Vậy.........