K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Đáp án B

Ta có  3 x - y + 5 x y i = x 2 - y 2 + 2 x y i ⇔ 5 x y - y = 2 x y 3 x = x 2 - y 2 ⇒ [ y = 0 x = 1 3 ⇒ y 2 = - 8 9 .

4 tháng 7 2018

Đáp án B.

Với 4 y - y - 1 + y + 3 2 ≤ 8 ,  xét từng TH phá giá trị tuyệt đối, ta tìm được nghiệm - 3 ≤ y ≤ 0 .  

Khi đó  3 x 2 - 2 x - 3 - log 3 5 = 3 x 2 - 2 x - 3 3 log 3 5 = 3 x 2 - 2 x - 3 5 ≥ 1 5  và y ∈ - 3 ; 0 ⇔ y + 4 ∈ 1 ; 4 ⇒ 5 - y + 4 ≤ 5 - 1 = 1 5 .  

Do đó  3 x 2 - 2 x - 3 - log 3 5 = 5 - y + 4 ⇔ [ x = - 1 x = 3 y = - 3 ⇒ x ; y = - 1 ; - 3 ; 3 ; - 3 .  

Vậy có tất cả hai cặp số thực (x;y) thỏa mãn yêu cầu bài toán.

10 tháng 2 2019

Đáp án là B

27 tháng 3 2019

Đáp án B.

Từ giả thiết, suy ra 5 x + 2 y + 1 3 x y - 1 + x + 1 = 5 x y - 1 + 1 3 x + 2 y + x y - 2 y  

⇔ 5 x + 2 y - 1 3 x + 2 y + x + 2 y = 5 x y - 1 - 1 3 x y - 1 + ( x y - 1 )  (1)

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm f ' ( t ) = 5 t . ln 5 + ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f (t) luôn đồng biến trên  ℝ .

Suy ra  1 ⇔ f ( x + 2 y ) = f ( x y - 1 ) ⇔ x + 2 y = x y - 1 ⇔ x + 1 = y ( x - 2 )

y = x + 1 x - 2

Do y > 0  nên x + 1 x - 2 > 0 ⇔ x > 2 x < - 1  . Mà x > 0 nên x > 2.

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2  trên 2 ; + ∞ .

Đạo hàm g ' ( x ) = 1 - 3 x - 2 2 > 0 , g ' ( x ) = 0 ⇔ ( x - 2 ) 2 = 3  

⇔ x = 2 + 3   ( t m ) x = 2 - 3   ( L ) . Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy m i n   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3  khi x = 2 + 3  và y = 1 + 3 .

20 tháng 2 2018

Chọn đáp án A

2 tháng 1 2018

Chọn đáp án C.

27 tháng 6 2017

Đáp án C

Đặt t = y x > 1 ⇒ y = t x ⇒ P = log x t x 2 - 1 2 + 8 log t t x x 2  

= log x t 2 + 1 2 + 8 log t t x - log t x 2 = 2 log x t 2 + 1 2 + 8 1 + log t x - 1 2 log t x 2  

Đặt u = log t x ⇒ P = 2 u + 1 2 + 8 1 + 1 2 u 2 = 4 u 2 + 4 u + 2 u 2 + 8 u + 9 = P u  

Do u = log x y x = log x y - 1 > 0  nên xét P u u > 0 ⇒ P ' u = 8 u + 4 - 4 u 3 - 8 u 2  

= 4 2 u + 1 u 3 - 1 u 3 = 0 → u > 0 u = 1 . Do đó ta tìm được P m i n = P 1 = 27 .

21 tháng 11 2019

Có 

Chọn đáp án A.

16 tháng 7 2018

9 tháng 11 2018

Đáp án A

Sử dụng BĐT buhinhacopski ta có

x − 2 + y + 3 2 ≤ 1 + 1 x − 2 + y + 3 = 2 x + y + 2 .

Tức là ta có  x + y + 1 2 ≤ 4 2 x + y + 2   . Đặt  t = x + y   . Chú ý rằng  t ≥ − 1   .

Ta có

t + 1 2 ≤ 8 t + 8 ⇔ t 2 − 6 t − 7 ≤ 0 ⇔ − 1 ≤ t ≤ 7.  

Vậy max t = 7  xảy ra khi   x − 2 = y + 3 x + y = 7 ⇔ x = 6 y = 1 .