K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

We have \(\hept{\begin{cases}5x+y-2z=37\left(1\right)\\3x-y+2z=11\end{cases}}\)

\(\Leftrightarrow8x=48\)

\(\Leftrightarrow x=6\)

If x=6 then (1) will become \(y-2z=7\)

\(\Rightarrow2y-4z=14\)

\(\Rightarrow x+2y-2z=20\)

20 tháng 12 2016

Ta có

\(1-\frac{2x}{2x+y}=1-\frac{2xy}{2xy+y^2}=\frac{y^2}{2xy+y^2}\left(1\right)\)

Ta lại có

\(\frac{y^2}{2xy+y^2}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow1-\frac{2x}{2x+y}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(3\right)\)

Tương tự

\(1-\frac{2y}{2y+z}+\frac{2yz+z^2}{\left(x+y+z\right)^2}\ge\frac{2z}{\left(x+y+z\right)}\left(4\right)\)

\(1-\frac{2z}{2z+x}+\frac{2xz+x^2}{\left(x+y+z\right)^2}\ge\frac{2x}{x+y+z}\left(5\right)\)

Lấy (3) + (4) + (5) vế theo vế ta được

\(3-2M+\frac{2\left(xy+yz+zx\right)+x^2+y^2+z^2}{\left(x+y+z\right)^2}\ge\frac{2\left(x+y+z\right)}{x+y+z}\)

\(\Leftrightarrow3-2M+1\ge2\)

\(\Leftrightarrow M\le1\)

Dấu =  xảy ra khi \(x=y=z\)

18 tháng 2 2016

 x^2-y^2=2=(x-y).(x+y)

ta co bang

x-y   1   2    -1    -2

y+x   2   1     -2    -1

x      1.5          -1.5

y       0.5             -0.5

8 tháng 3 2017

Bài này không khó cách làm thế này:

x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4

= (x + y +1 )2 +4

Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4

Dấu "=" xảy ra khi và chỉ khi x=y=-0,5

Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.

Xong rồi đó. Có gì sai sót các bạn góp ý nhé.

8 tháng 3 2017

x2 + y2 + 2x + 2y + 2xy + 5

= x2 + y2 + 12 + 2x + 2y + 2xy + 4

= (x + y + 1)2 + 4 \(\ge\) 4

8 tháng 1 2017

A=(x+y+1)(x+y+1)+4

A=(x+y+1)2+4

Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp

8 tháng 1 2017

ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

17 tháng 6 2018

a,A=5x2z-10xyz+5y2z

=5z(x2-2xy+y2)

=5z(x-y)2

Thay x=124,y=24,z=2 vào A ta được:

A=5.2(124-24)2=10.1002=10000

b,B=2x2+2y2-x2z+z-y2z-2

=2(x2+y2)-z(x2+y2)+(z-2)

=(2-z)(x2+y2)-(2-z)

=(2-z)(x2+y2-1)

Thay x=1,y=1,z=-1 vào B

B=(2+1)(12+12-1)=3

c, C=x2-y2+2y-1

=x2-(y2-2y+1)

=x2-(y-1)2

=(x-y+1)(x+y-1)

=(75-26+1)(75+26-1)

=50.100=5000

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha