Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2x^2-8x=0\)
\(\Leftrightarrow-2x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
#H
4:
a: \(\dfrac{31}{23}-\left(\dfrac{7}{32}+\dfrac{8}{23}\right)\)
\(=\dfrac{31}{23}-\dfrac{7}{32}-\dfrac{8}{23}\)
\(=1-\dfrac{7}{32}=\dfrac{25}{32}\)
b: \(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+1-1=\dfrac{1}{3}\)
c: \(\left(-30,75\right)+\left(\dfrac{31}{10}-69,25\right)-\left(-6,9\right)\)
\(=-30,75+3,1-69,25+6,9\)
=10-100
=-90
d: \(\left(-34,5\right)\cdot\dfrac{11}{25}-65,5\cdot\dfrac{11}{25}\)
\(=\dfrac{11}{25}\left(-34,5-65,5\right)\)
\(=\dfrac{11}{25}\cdot\left(-100\right)=-44\)
Bài 1:
a: \(\dfrac{1}{6}-0,4\cdot\dfrac{5}{8}+\dfrac{1}{2}\)
\(=\dfrac{1}{6}-\dfrac{2}{5}\cdot\dfrac{5}{8}+\dfrac{1}{2}\)
\(=\dfrac{1}{6}-\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{2-3+6}{12}=\dfrac{5}{12}\)
b: \(\left(-\dfrac{2}{3}\right)^2+\dfrac{1}{6}-\left(-0,5\right)^3\)
\(=\dfrac{4}{9}+\dfrac{1}{6}+\dfrac{1}{8}\)
\(=\dfrac{32+12+9}{72}=\dfrac{53}{72}\)
`#1231.2021`
`1.`
Ta có:
`y` tỉ lệ nghịch với `x` theo hệ số tỉ lệ `-4`
`=> y = (-4)/x` `(1)`
`x` tỉ lệ nghịch với `z` theo hệ số tỉ lệ `3/4`
`=> x = 3/4 \div z` `(2)`
Thay `(2)` vào `(1)`
`=> y = (-4)/(3/4 \div z) => y = -16/3 * z`
Vậy, `y` và `z` tỉ lệ thuận với nhau theo hệ số tỉ lệ `-16/3`
`=> A.`
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{b-a}{4-3}=23\)
Do đó: a=69; b=92
a) \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{19.21}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{21}\right)\)
\(A=\dfrac{1}{2}.\left(\dfrac{21}{21}-\dfrac{1}{21}\right)\)
\(A=\dfrac{1}{2}.\dfrac{20}{21}\)
\(A=\dfrac{10}{21}\)
b) \(B=\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(B=\dfrac{1}{99}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{96.97}+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)
\(B=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{96}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(B=\dfrac{1}{99}-\left(1-\dfrac{1}{99}\right)\)
\(B=\dfrac{1}{99}-\left(\dfrac{99}{99}-\dfrac{1}{99}\right)\)
\(B=\dfrac{1}{99}-\dfrac{98}{99}\)
\(B=-\dfrac{97}{99}\)
4. \(\dfrac{-3}{2}+x-\dfrac{5}{4}=\dfrac{-1}{3}-2x\)
<=> \(\dfrac{-18}{12}+\dfrac{12x}{12}-\dfrac{15}{12}=\dfrac{-4}{12}-\dfrac{24x}{12}\)
<=> -18 + 12x - 15 = -4 - 24x
<=> 12x + 24x = 18 + 15 - 4
<=> 36x = 29
<=> x = \(\dfrac{29}{36}\)
6. \(\dfrac{3}{4}x-\dfrac{3}{2}=\dfrac{5}{6}+\dfrac{3}{8}x\)
<=> \(\dfrac{18x}{24}-\dfrac{36}{24}=\dfrac{20}{24}+\dfrac{9x}{24}\)
<=> 18x - 36 = 20 + 9x
<=> 18x - 9x = 20 + 36
<=> 9x = 56
<=> x = \(\dfrac{56}{9}\)
7. \(3-\left(\dfrac{1}{2}+2x\right)=\dfrac{2}{3}-x\)
<=> \(3-\dfrac{1}{2}-2x=\dfrac{2}{3}-x\)
<=> \(\dfrac{18}{6}-\dfrac{3}{6}-\dfrac{12x}{6}=\dfrac{4}{6}-\dfrac{6x}{6}\)
<=> 18 - 3 - 12x = 4 - 6x
<=> 15 - 4 = 12x - 6x
<=> 11 = 6x
<=> x = \(\dfrac{11}{6}\)