Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: - \(\dfrac{5}{7}\) x \(\dfrac{31}{33}\) + \(\dfrac{-5}{7}\) x \(\dfrac{2}{33}\) + 2\(\dfrac{5}{7}\)
= - \(\dfrac{5}{7}\) \(\times\) ( \(\dfrac{31}{33}\) + \(\dfrac{2}{33}\)) + 2 + \(\dfrac{5}{7}\)
= - \(\dfrac{5}{7}\) + 2 + \(\dfrac{5}{7}\)
= 2
2, \(\dfrac{3}{14}\): \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\): \(\dfrac{1}{28}\) - 8
= (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) : \(\dfrac{1}{28}\) - 8
= \(\dfrac{2}{7}\) x 28 - 8
= 8 - 8
= 0
a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)
c, \(\widehat{CEA}+\widehat{CBA}\) =90
\(\widehat{ACB}+\widehat{ABC}\) = 90
=> \(\widehat{CEA}=\widehat{ACB}\)
Xét tam giác vuông CAE và CAB có:
AC chung
\(\widehat{CEA}=\widehat{ACB}\)
=> Tam giác CAE = CAB
=> CE = CB ( hai cạnh tương ứng)
a: Kẻ Ox//AB
Ox//AB
=>góc xOA=góc OAB(hai góc so le trong)
=>góc xOA=41 độ
góc xOA+góc xOB=góc AOB
=>góc xOB=71-41=30 độ=góc OCD
=>Ox//CD
=>AB//CD
=>Ax//Cy
b: BD//AO
=>góc B+góc OAB=180 độ(trong cùng phía)
=>góc B=180-41=139 độ
AB//CD
=>góc B+góc D=180 độ(hai góc trong cùng phía)
=>góc D=180-139=41 độ
\(M=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Vậy GTNN của \(M=1\) khi \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Câu 1: C
Câu 2: A
Cau 3: C
Câu 8: C
Câu 7: A