Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
13.
$(x+4)^2+(x+5)(x-5)-2x(x+1)$
$=(x^2+8x+16)+(x^2-25)-(2x^2+2x)$
$=x^2+8x+16+x^2-25-2x^2-2x$
$=(x^2+x^2-2x^2)+(8x-2x)+(16-25)=6x-9$
14.
$(x-1)^2-2(x+3)(x-3)+4x(x-4)$
$=(x^2-2x+1)-2(x^2-9)+(4x^2-16x)$
$=x^2-2x+1-2x^2+18+4x^2-16x$
$=(x^2-2x^2+4x^2)+(-2x-16x)+(1+18)=3x^2-18x+19$
15.
$(y-3)(y+3)(y^2+9)-(y^2+2)(y^2-2)$
$=(y^2-9)(y^2+9)-(y^4-4)$
$=(y^4-81)-(y^4-4)=-81+4=-77$
\(S=\frac{4\left(10^{2014}-1\right)}{9}+\frac{2\left(10^{1008}-1\right)}{9}+\frac{8\left(10^{1007}-1\right)}{9}+7\)
\(S=\frac{4.10^{2014}}{9}-\frac{4}{9}+\frac{2.10^{1008}}{9}-\frac{2}{9}+\frac{8.10^{1007}}{9}-\frac{8}{9}+7\)
\(S=\frac{4.10^{2014}}{9}+\frac{2.10.10^{1007}}{9}+\frac{8.10^{1007}}{9}+\frac{49}{3}\)
\(S=\left(\frac{2.10^{1007}}{3}\right)^2+2.\frac{2.10^{1007}}{3}.\frac{7}{3}+\left(\frac{7}{3}\right)^2\)
\(S=\left(\frac{2.10^{1007}}{3}+\frac{7}{3}\right)^2\) là số chính phương
- Xét △OBC có: \(BC\)//\(AD\) (gt).
=>\(\dfrac{OD}{OC}=\dfrac{OA}{OB}\) (định lí Ta-let).
=>\(OD=\dfrac{OA}{OB}.OC=\dfrac{2,5}{2}.3=3,75\) (cm).
Tớ ko giúp đc)): cọu tự tra google đuy,chứ có google để làm j ((:?
a) \(A=\left(x+5\right)^2-\left(x+3\right)^2\)
\(=\left[\left(x+5\right)-\left(x+3\right)\right]\left[\left(x+5\right)+\left(x+3\right)\right]\)
\(=\left(x+5-x-3\right)\left(x+5+x+3\right)\)
\(=2\left(2x+8\right)\)
\(=4x+16\)
b) \(B=\left(4x+1\right)^2-\left(2x+1\right)^2\)
\(=\left[\left(4x+1\right)-\left(2x+1\right)\right]\left[\left(4x+1\right)+\left(2x+1\right)\right]\)
\(=\left(4x+1-2x-1\right)\left(4x+1+2x+1\right)\)
\(=2x\left(6x+2\right)\)
\(=12x^2+4x\)
c) \(C=\left(3-4x\right)^2-\left(2x-1\right)\left(8x-9\right)\)
\(=9-24x+16x^2-16x^2+18x+8x-9\)
\(=\left(16x^2-16x^2\right)+\left(-24x+18x+8x\right)+\left(9-9\right)\)
\(=2x\)
d) \(D=\left(4+2x^2\right)-\left(1-4x\right)\left(4-x\right)\)
\(=4+2x^2-4+x+16x-4x^2\)
\(=\left(2x^2-4x^2\right)+\left(x+16x\right)+\left(4-4\right)\)
\(=-2x^2+17x\)
e) \(E=\left(2-3x\right)^2-2\left(2-3x\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left(2-3x+3x+5\right)^2\)
\(=7^2\)
\(=49\)
BE=2*BA
DC=2*AC
mà AB=AC
nên BE=DC
Xét tứ giác BCED có
A là trung điểm chung của BE và CD
Do đó: BCED là hình bình hành
Hình bình hành BCED có BE=CD
nên BCED là hình chữ nhật
a) Vì AB // CD ⇒ \(\widehat{ABD}=\widehat{ODC}\) ( 2 góc so le trong )
Hay \(\widehat{ABO}=\widehat{ODC}\)
Xét △ AOB và △ COD có:
\(\widehat{ABO}=\widehat{CDO}\) ( chứng minh trên )
\(\widehat{AOB}=\widehat{COD}\) ( đối đỉnh )
⇒ △ AOB ∼ △ COD ( g - g )
b) Vì △ AOB ∼ △ COD
⇒ \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\Rightarrow\dfrac{OA}{6}=\dfrac{5}{10}\)
\(\Rightarrow OA=3cm\)
Vì OE // DC nên theo định lí Ta - lét ta có:
\(\dfrac{OE}{BC}=\dfrac{OA}{AC}\Rightarrow\dfrac{OE}{10}=\dfrac{3}{3+6}\)
\(\Rightarrow OE\approx3,3cm\)