K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow2c=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

với a,b,c khác 0 và b khác c

đpcm.

6 tháng 10 2017

Áp dụng tỉ dãy số bằng nhau. Ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Leftrightarrow\frac{1+1+1}{a+b+c}=1\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{a}{b}\Leftrightarrow1-1\Leftrightarrow0\)

\(\Rightarrow PT=\frac{a-c}{c-b}=\frac{\left(a-c\right)^0}{\left(c-b\right)^0}=0\)

Vậy dấu = xảy ra khi a - c = a               , c - b = b

Ta có ĐPCM

Ps: Chả biết đúng hay không nữa

29 tháng 12 2020

như này mới đúng nè 

ta có\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}.2\)

\(\Rightarrow\frac{b}{ab}+\frac{a}{ba}=\frac{2}{c}\)

\(\Rightarrow\frac{b+a}{ab}=\frac{2}{c}\)

\(\Rightarrow\left(b+a\right)c=2ab\)

\(\Rightarrow cb+ca=ab+ab\)

\(\Rightarrow ca-ab=ab-cb\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a-c}{c-b}=\frac{a}{b}\)

21 tháng 12 2019

Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=c.\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

6 tháng 1 2017

ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{1}{c}\times2=\frac{1}{a}+\frac{1}{b}\)

\(=\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

\(=\frac{2}{c}=\frac{b+a}{ab}\)

= \(c\left(b+a\right)=ab\times2\)

= cb +ca = ab+ab

= ab - cb = ac-ab

\(=b\left(a-c\right)=a\left(c-b\right)\)

= \(\frac{a}{b}=\frac{a-c}{c-b}\)

6 tháng 1 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)

\(\frac{1}{c}=\frac{a+b}{2ab}\)

\(2ab=c\left(a+b\right)\)

\(ab+ab=ac+bc\)

\(ab-bc=ac-ab\)

\(b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

7 tháng 5 2019

\(A=\left(\frac{a+b}{b}\right).\left(\frac{b+c}{c}\right).\left(\frac{a+c}{a}\right)\)

Vì \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

\(\Rightarrow A=\frac{-c}{b}.\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)

\(\Rightarrow A=-1\)

7 tháng 5 2019

toán nâng cao ak bn

2 tháng 2 2017

theo bài ra ta có:

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\\ \Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

=> 2ab = c(a + b)

=> ab + ab = ca + cb

=> ab - cb = ca - ab

=> b( a - c ) = a( c - b )

=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)