Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)
Nhân vế (1) và (2) lại ta được:
\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
A/B=C/D <=>A/C=B/D
THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ
A/C=B/D=A+B/C+D=A-B/C-D
=>A+B/C+D=A-B/C-D
=>A+B/A-B=C+D/C-D =>ĐPCM
Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t(t\neq \pm 1)\) \(\Rightarrow a=bt;c=dt\)
Khi đó:
\(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b(t+1)}{b(t-1)}=\frac{t+1}{t-1}\)
\(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d(t+1)}{d(t-1)}=\frac{t+1}{t-1}\)
\(\Rightarrow \frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
Cách khác:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Áp dụng tính chất tỉ lệ thức ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\left(a+b\right).\left(c-d\right)=\left(a-b\right).\left(c+d\right)\)
Chia hai vế cho \(\left(a-b\right).\left(c-d\right)\)
\(\Rightarrow\frac{\left(a+b\right).\left(c-d\right)}{\left(a-b\right).\left(c-d\right)}=\frac{\left(a-b\right).\left(c+d\right)}{\left(a-b\right).\left(c-d\right)}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow ac-ad+ba-bd=ab-bc+ad-db\) (luôn đúng)
a)Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)
Xét VP \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)
Từ (1) và (2) ->Đpcm
b)Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Xét VP \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2)-> ĐPcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) ->Đpcm
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét : VT :
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(a\right)\)
Xé VP :\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(b\right)\)Từ ( a ) và ( b )=> Tỉ lệ thứ trên đúng => ĐPCM