Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (3x-2)(4x+5)=0
↔ TH1: 3x-2 = 0 ↔ x = 2/3
TH2 : 4x+5 = 0 ↔ x = -5/4
Vậy PT có tập no S = ( 2/3; -5/4)
b,(2,3x-6,9)(0,1x+2)=0
↔ TH1: 2,3x - 6,9 = 0 ↔ x = 3
TH2 : 0,1x + 2 = 0 ↔ x = -20
Vậy PT có tập no S = ( 3; -20)
c, (4x+2)(x^2 +1)=0
TH1: 4x+2=0 ↔ x = -1/2
Th2 : x^2 +1≠0 ( vô lí)
Vậy PT có tập no S = (-1/2)
d, (2x+7)(x-5)(5x+1)=0
↔ TH1: 2x+7 = 0 ↔ x = -7/2
TH2: x-5 = 0 ↔ x = 5
TH3 : 5x+1 = 0 ↔ x = -1/5
Vậy PT có tập no S = ( -7/2 ; 5 ; -1/5
a, \(\left(3x-2\right)\left(4x+5\right)=0\Leftrightarrow x=\frac{2}{3};x=-\frac{5}{4}\)
b, \(\left(2,3-6,9\right)\left(0,1x+2\right)=0\Leftrightarrow\frac{x}{10}+2=0\Rightarrow x=-20\)
c, \(\left(4x+2\right)\left(x^2+1>0\right)=0\Leftrightarrow x=-\frac{1}{2}\)
\(a,x\left(x-5\right)+6< 0\Leftrightarrow\left(x+6\right)\left(x-5\right)< 0\)
\(\orbr{\begin{cases}x+6< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -6\\x< 5\end{cases}}}\)
\(b,x^2+\left(x-2\right)\left(x+2\right)>2x\left(x-2\right)\)
\(\Leftrightarrow x^2+x^2-4>2x^2-4x\Leftrightarrow-4>-4x\)
\(\Leftrightarrow-4x< -4\Rightarrow x>1\)
\(c,\left(x-3\right)\left(x-3\right)+\left(x+5\right)\left(x+5\right)< 2\left(x-3\left(x+5\right)\right)\)
\(\Leftrightarrow x^2-6x+9+x^2+10x+25< 2x^2+4x-30\)
\(\Leftrightarrow2x^2-2x^2+4x-4x< -30-34\)
\(\Leftrightarrow0x< -64\)
bất phương trình vô nghiệm
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
Lời giải:
a. $9x^2-16-(3x-4)(2x+5)=0$
$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$
$\Leftrightarrow (3x-4)(x-1)=0$
$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$
$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.
b.
$x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2-2x)+(6x-12)=0$
$\Leftrightarrow x(x-2)+6(x-2)=0$
$\Leftrightarrow (x-2)(x+6)=0$
$\Leftrightarrow x-2=0$ hoặc $x+6=0$
$\Leftrightarrow x=2$ hoặc $x=-6$
c.
$x^2-2x=35$
$\Leftrightarrow x^2-2x-35=0$
$\Leftrightarrow (x^2+5x)-(7x+35)=0$
$\Leftrightarrow x(x+5)-7(x+5)=0$
$\Leftrightarrow (x+5)(x-7)=0$
$\Leftrightarrow x+5=0$ hoặc $x-7=0$
$\Leftrightarrow x=-5$ hoặc $x=7$
- Xét \(\Delta OAD\)có : EA = EO (gt) ; FO = FD (gt)
= > EF là đường trung bình của \(\Delta OAD\) => \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC ) (1)
Xét \(\Delta ABO\) đều , có E là trung điểm AO => BE là đường trung tuyến của tam giác ABO => BE là đường cao của tam giác ABO
\(\Rightarrow BE⊥AC\left\{E\right\}\)
- Xét tam giác EBC vuông tại E , có : BK = KC => EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC
=> \(EK=\frac{1}{2}BC\) (2)
- Xét tam giác OCD , có
+ OD = OC ( Vì BD = AC và OB = OA => BD-OB = AC - OA => OD = OC )
+ \(\widehat{COD}=60^o\)( Vì tam giác OAB đều )
=> tam giác OCD đều
-Xét tam giác đều OCD , có FO = FD => CF là trung tuyến của tam giác OCD => CF là đường cao của tam giác OCD
HAy \(CF⊥BD\left\{F\right\}\)
- Xét tam giác FBC vuông tại F , có BK = KC (gt)
=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC
=> \(FK=\frac{1}{2}BC\) (3)
TỪ (1) , (2) và (3) , ta có : \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)
=>>>> tam giác EFK đều
\(\left(2x-5\right)^2+4\left(3+x\right)\left(x-3\right)-2x=-5\)
\(\Leftrightarrow4x^2-20x+25+4x^2-36-2x=-5\)
\(\Leftrightarrow8x^2-22x-11=-5\Leftrightarrow8x^2-22x-6=0\)
\(\Leftrightarrow2\left(4x^2-11x-3\right)=0\Leftrightarrow2\left[\left(4x^2-12x\right)+\left(x-3\right)\right]=2\left[4x\left(x-3\right)+\left(x-3\right)\right]=0\)
\(\Leftrightarrow2\left(x-3\right)\left(4x+1\right)=0\)
*) x - 3 = 0 <=> x = 3
*) 4x + 1 = 0 <=> x = -1/4