Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x ≥ 0 thì \(\sqrt{x}\ge0\) nên \(\sqrt{x}+1\ge1\)
Khi đó \(B=\left(\sqrt{x}+1\right)^{99}+2022\ge1^{99}+2022\)
Hay \(B=\left(\sqrt{x}+1\right)^{99}+2022\ge2023\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\) hay x = 0
Vậy GTNN của \(B=\left(\sqrt{x}+1\right)^{99}+2022\) là 2023 khi x = 0
\(B=\left(\sqrt{x}+1\right)^{99}+2022\left(x\ge0\right)\)
Vì: \(x\ge0\)
Nên => \(\left(\sqrt{x}+1\right)^{99}\ge0\)
=> \(\left(\sqrt{x}+1\right)^{99}+2022\ge2022\)
=> \(B\ge2022\)
Dấu " = " xảy ra khi: \(\Leftrightarrow\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)
Vậy: B không có giá trị nhỏ nhất
\(ĐK:x\ge0\\ PT\Leftrightarrow\left(x-\dfrac{3}{4}\right)\left(x^2+\dfrac{3}{4}x+\dfrac{9}{16}\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\left(n\right)\\\sqrt{x}=3\left(n\right)\\x^2+2\cdot\dfrac{3}{8}x+\dfrac{9}{64}+\dfrac{27}{64}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=9\\\left(x+\dfrac{3}{8}\right)^2+\dfrac{27}{64}=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=9\end{matrix}\right.\)
(5 - \(x\))(9\(x^2\) - 4) =0
\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\); \(\dfrac{2}{3}\); \(5\)}
72\(x\) + 72\(x\) + 3 = 344
72\(x\) \(\times\) ( 1 + 73) = 344
72\(x\) \(\times\) (1 + 343) = 344
72\(x\) \(\times\) 344 = 344
72\(x\) = 344 : 344
72\(x\) = 1
72\(x\) = 70
\(2x\) = 0
\(x\) = 0
Kết luận: \(x\) = 0
\(\sqrt{1+\sqrt{1+\sqrt{x}}}=3=\sqrt{9}\)
=>\(1+\sqrt{1+\sqrt{x}}=9\)
=>\(\sqrt{1+\sqrt{x}}=8=\sqrt{64}\)
=>\(1+\sqrt{x}=64\)
=>\(\sqrt{x}=63=\sqrt{3969}\)
=>x=3969
\(\sqrt{1+\sqrt{1+\sqrt{x}}}=3\)
=>\(1+\sqrt{1+\sqrt{x}}=9\)
\(\sqrt{1+\sqrt{x}}=8\)
=>\(1+\sqrt{x}=64\)
\(\sqrt{x}=63\)
\(x=3969\)
\(x-2\sqrt{x}=0\)
\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
a)\(\left(x+1\right)^3=-27\)
\(\left(x+1\right)^3=\left(-3\right)^3\)
x+1=-3
x=(-3)-1
x=-4
b)6-3x=8
3x=6-8
3x=(-2)
x=\(-\frac{2}{3}\)
a) \(\left(x+1\right)^3=-27\)
\(\Rightarrow\left(x+1\right)^3=\left(-3\right)^3\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-4\)
Vậy \(x=-4\)
b) \(\sqrt{36}-\sqrt{9}.x=\sqrt{64}\)
\(\Rightarrow6-3.x=8\)
\(\Rightarrow3x=-2\)
\(\Rightarrow x=\frac{-2}{3}\)
Vậy \(x=\frac{-2}{3}\)
\(\left(x-\dfrac{3}{2}\right)\times\left(2x+1\right)>0\)
Th1:
\(x-\dfrac{3}{2}>0\Leftrightarrow x>\dfrac{3}{2}\)
\(2x+1>0\Leftrightarrow2x>1\Leftrightarrow x>\dfrac{1}{2}\)
( 1 )
Th2:
\(x-\dfrac{3}{2}< 0\Leftrightarrow x< \dfrac{3}{2}\)
\(2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< -\dfrac{1}{2}\)
( 2 )
Từ ( 1 ) và ( 2 ), ta có:
\(\Rightarrow x< -\dfrac{1}{2};x>\dfrac{3}{2}\)
\(\left(2-x\right)\times\left(\dfrac{4}{5}-x\right)< 0\)
Th1:
\(2-x>0\Leftrightarrow x>2\)
\(\dfrac{4}{5}-x< 0\Leftrightarrow x< \dfrac{4}{5}\)
( Loại )
Th2:
\(2-x< 0\Leftrightarrow x< 2\)
\(\dfrac{4}{5}-x>0\Leftrightarrow x>\dfrac{4}{5}\)
=> \(\dfrac{4}{5}< x< 2\)
Xét x+3>_0=>/x+3/=x+3
=>x>_-3
=>/x+3/+2x=-3
=>x+3+2x=-3
=>x+2x=-3-3
=>3x=-6
=>x=-2>-3
=>thoả mãn
Xét a+3<0=>/a+3/=-a-3
=>a<-3
=>/x+3/+2x=-3
=>-a-3+2x=-3
=>2x-x=-3+3
=>x=0
mà x<-3
=>vô lí
Vậy x=-2
Lớp 9 mới học căn bậc nhé