Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhiều bài quá. Bạn nên tách lẻ 1-2 bài 1 post để nhận được sự hỗ trợ tốt hơn.
a) 220 = 22 . 5 . 11
240 = 24 . 3 . 5
300 = 22 . 3 . 52
=> ƯCLN(220;240;300) = 22 . 5 . 3 = 60
=> BCNN(220;240;300) = 24 . 5 . 11 . 3 = 2640
b) 40 = 23 . 5
75 = 3 . 52
105 = 3 . 5 .7
=> ƯCLN(40;75;105) = 5 . 3 = 15
=> BCNN(40;75;105) = 23 . 52 . 3 . 7 = 4200
c) 18 = 2 . 32
36 = 22 . 32
72 = 23 . 32
=> ƯCLN(18;36;72) = 2 . 32 = 18
=> BCNN(18;36;72) = 23 . 32 = 72
a) Ta có: 18=2⋅3^21
24=2^3⋅3
30=2⋅3⋅5
Do đó: ƯCLN(18;24;30)=2⋅3=6 và BCNN(18;24;30)=2^3⋅3^2⋅5=360
b) Ta có: 40=2^3⋅5
75=3⋅5^2
105=3⋅5⋅7105=3⋅5⋅7
Do đó: ƯCLN(40;75;105)=5^1=5 và BCNN(40;75;105)=2^3⋅3⋅5^2⋅7=4200
c) Ta có: 18=2⋅3^2
36=2^2⋅3^2
72=2^3⋅3^2
Do đó: ƯCLN(18;36;72)=2.3^2=2⋅9=18 và BCNN(18;36;72)=2^3⋅3^2=72
Ta có:
\(a=40=2^3\cdot5\)
\(b=75=5^2\cdot3\)
\(c=105=5\cdot3\cdot7\)
\(\RightarrowƯCLN\left(a,b,c\right)=5\)
\(\Rightarrow BCNN\left(a,b,c\right)=5^2\cdot2^3\cdot3\cdot7=4200\)
BCNN (40; 75; 105) = 4000
UCLN (40; 75; 105) = 5
Mà 4000 : 5 = 800
⇒ BCNN (a; b; c) gấp 800 lần UCLN (a; b; c)
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
Để tìm số tự nhiên a và b đáp ứng ƯCLN(a, b) = 5 và BCNN(a, b) = 105, ta có thể sử dụng các bước sau:
Bước 1: Tìm ước số chung lớn nhất (ƯCLN) của 105 và 5. Vì 5 là ước số của 105 nên ƯCLN(a, b) = 5.
Bước 2: Tìm BCNN của 105 và 5. Vì 5 là ước số của 105 nên BCNN(a, b) = 105.
Bước 3: Tìm các ước số của 105. Các ước số của 105 là 1, 3, 5, 7, 15, 21, 35, 105.
Bước 4: Tìm các cặp số (a, b) sao cho ước số chung lớn nhất của họ là 5 và BCNN của họ là 105. Từ các ước số của 105, ta có thể tạo các cặp số (a, b) như sau:
- (5, 105)
- (15, 35)
- (21, 15)
- (35, 7)
- (105, 1)
Bước 5: Chọn một cặp số (a, b) từ các cặp số được tạo ở bước 4. Ví dụ, chọn cặp số (5, 105).
Do đó, một cặp số tự nhiên a và b đáp ứng ƯCLN(a, b) = 5 và BCNN(a, b) = 105 là (5, 105).
Tích của ước chung lớn nhất của hai số với bội chung nhỏ nhất của hai số đó bằng tích của hai số đó
Theo bài ra ta có: \(\left\{{}\begin{matrix}a=5k\\b=5d\end{matrix}\right.\) (\(k;d\))= 1; \(k;d\)\(\in\) N*
\(a.b\) = 5\(k.5d\) = 5.105 = 525
\(k.d\) = 525: 25 =21
Ư(21) = { 1; 3; 7; 21}
Lập bảng ta có:
\(k\) | 1 | 3 | 7 | 21 |
\(d=21:k\) | 21 | 7 | 3 | 1 |
\(a=5.k\) | 5 | 15 | 35 | 105 |
\(b=5.d\) | 105 | 35 | 15 | 5 |
(\(a;b\)) | (5;105) | (15;35) | (35;15) | (105;5) |
Theo bảng trên ta có các cặp a; b thỏa mãn đề bài lần lượt là:
(a; b) = (5; 105); (15; 35); (35; 15); (105; 5)
Ta có:
\(40=2^3.5\)
\(75=3.5^2\)
\(105=3.5.7\)
\(ƯCLN\left(40;75;105\right)=5\)
\(BCNN\left(40;75;105\right)=2^3.3.5^2.7=8.3.25.7=4200\)
Ta có :
40 = 23 . 5
75 = 3 . 52
105 = 3 . 5 .7
ƯCLN(40;75;105) = 5 . 3 = 15
BCNN(40;75;105) = 23 . 52 . 3 . 7 = 4200
--thodagbun--
( h tớ lm b mt nè :( )