K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TM
0
TM
0
AH
Akai Haruma
Giáo viên
22 tháng 11 2021
Lời giải:
a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau
$a>b\Rightarrow x>y$
$BCNN(a,b)=6xy=120$
$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$
$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$
b. Bạn làm tương tự.
K
4
VD
1
K
0
Để tìm số tự nhiên a và b đáp ứng ƯCLN(a, b) = 5 và BCNN(a, b) = 105, ta có thể sử dụng các bước sau:
Bước 1: Tìm ước số chung lớn nhất (ƯCLN) của 105 và 5. Vì 5 là ước số của 105 nên ƯCLN(a, b) = 5.
Bước 2: Tìm BCNN của 105 và 5. Vì 5 là ước số của 105 nên BCNN(a, b) = 105.
Bước 3: Tìm các ước số của 105. Các ước số của 105 là 1, 3, 5, 7, 15, 21, 35, 105.
Bước 4: Tìm các cặp số (a, b) sao cho ước số chung lớn nhất của họ là 5 và BCNN của họ là 105. Từ các ước số của 105, ta có thể tạo các cặp số (a, b) như sau:
- (5, 105)
- (15, 35)
- (21, 15)
- (35, 7)
- (105, 1)
Bước 5: Chọn một cặp số (a, b) từ các cặp số được tạo ở bước 4. Ví dụ, chọn cặp số (5, 105).
Do đó, một cặp số tự nhiên a và b đáp ứng ƯCLN(a, b) = 5 và BCNN(a, b) = 105 là (5, 105).
Tích của ước chung lớn nhất của hai số với bội chung nhỏ nhất của hai số đó bằng tích của hai số đó
Theo bài ra ta có: \(\left\{{}\begin{matrix}a=5k\\b=5d\end{matrix}\right.\) (\(k;d\))= 1; \(k;d\)\(\in\) N*
\(a.b\) = 5\(k.5d\) = 5.105 = 525
\(k.d\) = 525: 25 =21
Ư(21) = { 1; 3; 7; 21}
Lập bảng ta có:
Theo bảng trên ta có các cặp a; b thỏa mãn đề bài lần lượt là:
(a; b) = (5; 105); (15; 35); (35; 15); (105; 5)