K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

m                              1                              7

\(m^2-8m+7\\\)        +0          -                0          +    

a: (2x-1)(x+3)<=0

nên -3<=x<=1/2

b: \(\left(2x-7\right)\left(4-5x\right)>=0\)

=>(2x-7)(5x-4)<=0

=>4/5<=x<=7/2

i: \(\Leftrightarrow\dfrac{3-x+2}{x-2}>0\)

\(\Leftrightarrow\dfrac{x-5}{x-2}< 0\)

=>2<x<5

10 tháng 3 2018

Đáp án: A

Từ bảng xét dấu ta thấy phương trình f(x) = 0 có 2 nghiệm là -3 và 2. Do đó, ta loại được đáp án C và D

Dựa vào bảng xét dấu, f(x) > 0 trong khoảng (-3;2) do đó hệ số a < 0

Đặt f(x)=0

=>5x^2+4x-1=0

=>(x+1)(5x-1)=0

=>x=-1 hoặc x=1/5

=>f(x)<0 khi -1<x<1/5 và f(x)>0 khi x<-1 hoặc x>1/5

21 tháng 6 2017

f(x) = (3x2 – 4x)(2x2 – x – 1)

+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số a = 3 > 0.

Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3.

+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số a = 2 > 0

Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang dấu – khi –1/2 < x < 1.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 ⇔ x ∈ (–∞; –1/2) ∪ (0; 1) ∪ (4/3; +∞)

f(x) = 0 ⇔ x ∈ {–1/2; 0; 1; 4/3}

f(x) < 0 ⇔ x ∈ (–1/2; 0) ∪ (1; 4/3)

7 tháng 11 2019

f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)

+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0

Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2

+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.

+ Nhị thức 2x + 9 có nghiệm x = –9/2.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)

f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}

f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)