Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(BH^2=HA\cdot HC\)
\(\Leftrightarrow BH^2=2\cdot6=12\)
hay \(BH=2\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBHA vuông tại H, ta được:
\(BA^2=BH^2+HA^2\)
\(\Leftrightarrow AB^2=\left(2\sqrt{3}\right)^2+2^2=12+4=16\)
hay BA=4(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BA^2+BC^2\)
\(\Leftrightarrow BC^2=8^2-4^2=48\)
hay \(BC=4\sqrt{3}\left(cm\right)\)
b) Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{CA}=\dfrac{4\sqrt{3}}{8}=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{A}=\dfrac{BA}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
14.
\(\dfrac{1-cosa}{sina}=\dfrac{sina\left(1-cosa\right)}{sin^2a}=\dfrac{sina\left(1-cosa\right)}{1-cos^2a}=\dfrac{sin\left(1-cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\dfrac{sina}{1+cosa}\)
Câu b đề bài sai, đẳng thức đúng phải là: \(1+tan^2a=\dfrac{1}{cos^2a}\)
\(1+tan^2a=1+\dfrac{sin^2a}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=\dfrac{1}{cos^2a}\)
\(tan^2a-sin^2a=\dfrac{sin^2a}{cos^2a}-sin^2a=\dfrac{sin^2a}{cos^2a}\left(1-cos^2a\right)=\dfrac{sin^2a}{cos^2a}.sin^2a=tan^2a.sin^2a\)
\(\dfrac{sin^4a-cos^4a}{sina+cosa}=\dfrac{\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)}{sina+cosa}=\dfrac{sin^2a-cos^2a}{sina+cosa}=\dfrac{\left(sina+cosa\right)\left(sina-cosa\right)}{sina+cosa}\)
\(=sina-cosa\)
13.
b. Chia cả tử và mẫu cho sinB:
\(N=\dfrac{\dfrac{4cosB}{sinB}+\dfrac{2sinB}{sinB}}{\dfrac{cossB}{sinB}-\dfrac{3sinB}{sinB}}=\dfrac{4cotB+2}{cotB-3}=\dfrac{4.\dfrac{3}{2}+2}{\dfrac{3}{2}-3}=-\dfrac{16}{3}\)
c. Chia cả tử và mẫu cho \(cos^3B\)
\(M=\dfrac{\dfrac{sin^3B}{cos^3B}-\dfrac{cos^3B}{cos^3B}}{\dfrac{sin^3B}{cos^3B}+\dfrac{cos^3B}{cos^3B}}=\dfrac{tan^3B-1}{tan^3B+1}=\dfrac{3^3-1}{3^3+1}=\dfrac{13}{14}\)
Gọi A là giao điểm của (d) với (d1)
\(\Rightarrow\) Tọa độ A thỏa mãn: \(\left\{{}\begin{matrix}y=-x+2\\y=3x+1\end{matrix}\right.\) \(\Rightarrow A\left(\dfrac{1}{4};\dfrac{7}{4}\right)\)
Thay tọa độ A vào pt (d2) ta được:
\(\dfrac{7}{4}=2.\dfrac{1}{4}+2\Rightarrow\dfrac{7}{4}=\dfrac{5}{2}\) (ko thỏa mãn)
Vậy 3 đường thẳng nói trên ko đồng quy (đề bài sai)
Ta có: \(\dfrac{AB}{AC}=\dfrac{2}{3}\). Gọi \(AB=2x\left(cm\right),AC=3x\left(cm\right)\)
Áp dụng định lý Pytago trong tam giác vuông ABC:
\(BC^2=AB^2+AC^2=4x^2+9x^2=13x^2\)
\(\Rightarrow BC=\sqrt{13}x\)
Xét tam giác ABC vuông tại A có đường cao AH:
\(AH.BC=AB.AC\)(hệ thức lượng trong tam giác vuông)
\(\Rightarrow6\sqrt{13}x=6x^2\)
\(\Rightarrow x^2-\sqrt{13}x=0\)
Vì x > 0
\(\Rightarrow x=\sqrt{13}\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AB=2x=2\sqrt{13}\left(cm\right)\\AC=3x=3\sqrt{13}\left(cm\right)\\BC=\sqrt{13}x=13\left(cm\right)\end{matrix}\right.\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{2}{3}\)
nên \(\dfrac{HB}{HC}=\dfrac{4}{9}\)
\(\Leftrightarrow HB=\dfrac{4}{9}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=36\)
\(\Leftrightarrow HC^2=16\)
\(\Leftrightarrow HC=4\left(cm\right)\)
\(\Leftrightarrow HB=9\left(cm\right)\)
Ta có: BH+HC=BC
nên BC=4+9=13(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AC=3\sqrt{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
a: Khi x=36 thì \(B=\left(\dfrac{6+1}{6-2}-1\right)=\left(\dfrac{7}{3}-1\right)=\dfrac{4}{3}\)
b: \(A=\dfrac{\sqrt{x}+\sqrt{x}-2-2\sqrt{x}-4}{x-4}=\dfrac{-2\sqrt{x}-6}{x-4}\)
Bài 2:
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
a: \(P=\left(\dfrac{6}{\sqrt{x}-1}-\dfrac{6}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\dfrac{6\sqrt{x}-6\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{6\sqrt{x}-6\sqrt{x}+6}{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-\left(x-4\right)}\)
\(=\dfrac{6\left(\sqrt{x}-2\right)}{3\sqrt{x}}=\dfrac{2\sqrt{x}-4}{\sqrt{x}}\)
b: P=2
=>\(2\sqrt{x}-4=2\sqrt{x}\)
=>\(-4=0\left(vôlý\right)\)
Vậy: \(x\in\varnothing\)
c: Để P nguyên thì \(2\sqrt{x}-4⋮\sqrt{x}\)
=>\(-4⋮\sqrt{x}\)
=>\(\sqrt{x}\inƯ\left(-4\right)\)
mà \(\sqrt{x}>0\) với mọi x thỏa mãn ĐKXĐ
nên \(\sqrt{x}\in\left\{1;2;4\right\}\)
=>\(x\in\left\{1;4;16\right\}\)
Kết hợp ĐKXĐ, ta được: x=16
Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Áp dụng BDT Co-si, ta có:
\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12
=> A \(\ge15\)
Dấu "=" xảy ra <=> x = 81
tự làm đi hsg mà :))
Ok dị pải tự lm rồi