K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

Bài 1:

a: Khi x=36 thì \(B=\left(\dfrac{6+1}{6-2}-1\right)=\left(\dfrac{7}{3}-1\right)=\dfrac{4}{3}\)

b: \(A=\dfrac{\sqrt{x}+\sqrt{x}-2-2\sqrt{x}-4}{x-4}=\dfrac{-2\sqrt{x}-6}{x-4}\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(BH^2=HA\cdot HC\)

\(\Leftrightarrow BH^2=2\cdot6=12\)

hay \(BH=2\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBHA vuông tại H, ta được:

\(BA^2=BH^2+HA^2\)

\(\Leftrightarrow AB^2=\left(2\sqrt{3}\right)^2+2^2=12+4=16\)

hay BA=4(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BA^2+BC^2\)

\(\Leftrightarrow BC^2=8^2-4^2=48\)

hay \(BC=4\sqrt{3}\left(cm\right)\)

b) Xét ΔABC vuông tại B có 

\(\sin\widehat{A}=\dfrac{BC}{CA}=\dfrac{4\sqrt{3}}{8}=\dfrac{\sqrt{3}}{2}\)

\(\cos\widehat{A}=\dfrac{BA}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

1: Khi x=9 thì \(A=\dfrac{9+2+4}{3-2}=15\)

2: \(B=\dfrac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

3: \(P=\dfrac{A}{B}=\dfrac{x+\sqrt{x}+4}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{x+\sqrt{x}+4}{\sqrt{x}+1}=\sqrt{x}+\dfrac{4}{\sqrt{x}+1}\)

\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-1\)

=>\(P>=2\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}-1=2\cdot2-1=3\)

Dấu = xảy ra khi (căn x+1)^2=4

=>căn x+1=2

=>x=1

31 tháng 1 2023

cảm ơn bn nhiều

 

1: ĐKXĐ: x>=0 và căn x-2<>0

=>x>=0 và x<>4

2: \(=\sqrt{\left(\sqrt{15}+2\right)^2}-\sqrt{\left(\sqrt{15}-2\right)^2}\)

\(=\sqrt{15}+2-\sqrt{15}+2\)

=4

3: \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-2\sqrt{5}-\dfrac{1}{2}\cdot2\sqrt{2}\)

\(=\sqrt{5}+\sqrt{2}-2\sqrt{5}-\sqrt{2}=-\sqrt{5}\)

15 tháng 8 2023

cho em hỏi bài 1 <>0 là gì vậy ạ?

1:

AC=căn 5^2-3^2=4cm

BH=AB^2/BC=1,8cm

CH=5-1,8=3,2cm

AH=3*4/5=2,4cm

2:

ΔCBA vuông tại B có tan 40=BC/BA

=>BC/10=tan40

=>BC=8,39(m)

ΔCBD vuông tại B có tan D=BC/BD

=>BD=8,39/tan35=11,98(m)

NV
21 tháng 11 2021

Gọi A là giao điểm của (d) với (d1)

\(\Rightarrow\) Tọa độ A thỏa mãn: \(\left\{{}\begin{matrix}y=-x+2\\y=3x+1\end{matrix}\right.\) \(\Rightarrow A\left(\dfrac{1}{4};\dfrac{7}{4}\right)\)

Thay tọa độ A vào pt (d2) ta được:

\(\dfrac{7}{4}=2.\dfrac{1}{4}+2\Rightarrow\dfrac{7}{4}=\dfrac{5}{2}\) (ko thỏa mãn)

Vậy 3 đường thẳng nói trên ko đồng quy (đề bài sai)

8 tháng 10 2021

tự làm đi hsg mà :))

8 tháng 10 2021

Ok dị pải tự lm rồi

 

29 tháng 8 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{2}{3}\). Gọi \(AB=2x\left(cm\right),AC=3x\left(cm\right)\)

Áp dụng định lý Pytago trong tam giác vuông ABC:

\(BC^2=AB^2+AC^2=4x^2+9x^2=13x^2\)

\(\Rightarrow BC=\sqrt{13}x\)

Xét tam giác ABC vuông tại A có đường cao AH:

\(AH.BC=AB.AC\)(hệ thức lượng trong tam giác vuông)

\(\Rightarrow6\sqrt{13}x=6x^2\)

\(\Rightarrow x^2-\sqrt{13}x=0\)

Vì x > 0

\(\Rightarrow x=\sqrt{13}\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=2x=2\sqrt{13}\left(cm\right)\\AC=3x=3\sqrt{13}\left(cm\right)\\BC=\sqrt{13}x=13\left(cm\right)\end{matrix}\right.\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{2}{3}\)

nên \(\dfrac{HB}{HC}=\dfrac{4}{9}\)

\(\Leftrightarrow HB=\dfrac{4}{9}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=36\)

\(\Leftrightarrow HC^2=16\)

\(\Leftrightarrow HC=4\left(cm\right)\)

\(\Leftrightarrow HB=9\left(cm\right)\)

Ta có: BH+HC=BC

nên BC=4+9=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AC=3\sqrt{13}\left(cm\right)\end{matrix}\right.\)