Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(=xy^5\cdot\dfrac{1}{4}x^6\cdot\left(-8\right)y^3z^3=-2x^7y^8z^3\)
b: \(f\left(1\right)=3\cdot1^2-4+1=0\)
=>x=1 là nghiệm của f(x)
\(f\left(-\dfrac{1}{3}\right)=3\cdot\dfrac{1}{9}-4\cdot\dfrac{-1}{3}+1=\dfrac{1}{3}+\dfrac{4}{3}+1=\dfrac{8}{3}\)
=>x=-1/3 không là nghiệm của f(x)
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
IM=IN
CI chung
Do đó: ΔIMC=ΔINC
b: Xét ΔCKB có
M là trung điểm của BC
MN//KB
Do đó: N là trung điểm của CK
\(\dfrac{-15}{2}=\dfrac{-3}{\left|-4x+5\right|}\)
\(\Leftrightarrow\left|4x-5\right|=\dfrac{6}{15}=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=\dfrac{2}{5}\\4x-5=-\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{27}{5}\\4x=\dfrac{23}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\\x=\dfrac{23}{20}\end{matrix}\right.\)
Bài 16
a) \(A=\dfrac{n+1}{n+2}\)
Gọi ƯCLN(n+1;n+2) là x ( \(x\in N\) *)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\left(n+1\right)⋮x\\\left(n+2\right)⋮x\end{matrix}\right.\)
\(\Rightarrow\) \(\left(n+2\right)-\left(n+1\right)\) \(⋮x\)
\(\Rightarrow\) \(1\) \(⋮x\)
\(\Rightarrow\) x = 1 \(\Rightarrow\) ƯCLN(n+1;n+2)=1
Vậy A là phân số tối giản ( vì có ƯCLN = 1)
b) \(B=\dfrac{n+1}{3n+4}\)
Gọi ƯCLN(n+1;3n+4) là d ( \(d\in N\) *)
\(\Rightarrow\) \(\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\) (3n+4)-(3n+3) chia hết cho d
\(\Rightarrow\) \(1⋮d\)
\(\Rightarrow\) d =1
Vậy B là phân số tối giản.
Mấy phần kia tương tự
c: Gọi d=ƯCLN(3n+2;5n+3)
=>3n+2 chia hết cho d và 5n+3 chia hết cho d
=>15n+10 chia hết cho d và 15n+9 chia hết cho d
=>1 chia hết cho d
=>ƯCLN(3n+2;5n+3)=1
=>PSTG
d: Gọi d=ƯCLN(12n+1;30n+2)
=>12n+1 và 30n+2 đều chia hết cho d
=>60n+5 chia hết cho d và 60n+4 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
6:
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
mà 8<9
nên \(2^{225}< 3^{150}\)
4: \(\left|5x+3\right|>=0\forall x\)
=>\(-\left|5x+3\right|< =0\forall x\)
=>\(-\left|5x+3\right|+5< =5\forall x\)
Dấu = xảy ra khi 5x+3=0
=>x=-3/5
1:
\(\left(2x+1\right)^4>=0\)
=>\(\left(2x+1\right)^4+2>=2\)
=>\(M=\dfrac{3}{\left(2x+1\right)^4+2}< =\dfrac{3}{2}\)
Dấu = xảy ra khi 2x+1=0
=>x=-1/2
\(c,-\dfrac{8}{13}+\left(-\dfrac{7}{5}-x\right)=-\dfrac{1}{2}\\ -\dfrac{7}{5}-x=-\dfrac{1}{2}-\dfrac{8}{13}\\ -\dfrac{7}{5}-x=-\dfrac{29}{26}\\ x=-\dfrac{7}{5}-\left(-\dfrac{29}{26}\right)=-\dfrac{37}{130}\\ d,-1\dfrac{1}{7}-\left[-\dfrac{5}{3}+\left(x-\dfrac{7}{3}\right)\right]=-\dfrac{4}{21}\\ -\dfrac{8}{7}-\left[-\dfrac{5}{3}+\left(x-\dfrac{7}{3}\right)\right]=-\dfrac{4}{21}\\ -\dfrac{5}{3}+\left(x-\dfrac{7}{3}\right)=-\dfrac{8}{7}-\left(-\dfrac{4}{21}\right)\\ -\dfrac{5}{3}+\left(x-\dfrac{7}{3}\right)=-\dfrac{20}{21}\\ x-\dfrac{7}{3}=-\dfrac{20}{21}-\left(-\dfrac{5}{3}\right)\\ x-\dfrac{7}{3}=\dfrac{5}{7}\\ x=\dfrac{5}{7}+\dfrac{7}{3}=\dfrac{64}{21}\\ e,-\dfrac{2}{3}-x:\dfrac{1}{2}=\dfrac{2}{5}\\ x:\dfrac{1}{2}=-\dfrac{2}{3}-\dfrac{2}{5}\\ x:\dfrac{1}{2}=-\dfrac{16}{15}\\ x=-\dfrac{16}{15}\times\dfrac{1}{2}=-\dfrac{8}{15}\)
c: -8/13+(-7/5-x)=-1/2
=>x+7/5+8/13=1/2
=>x=1/2-7/5-8/13=-197/130
d: \(\Leftrightarrow-\dfrac{8}{7}+\dfrac{5}{3}-\left(x-\dfrac{7}{3}\right)=\dfrac{-4}{21}\)
=>\(x-\dfrac{7}{3}=\dfrac{-8}{7}+\dfrac{5}{3}+\dfrac{4}{21}=\dfrac{-24+35+4}{21}=\dfrac{18}{21}=\dfrac{6}{7}\)
=>x=6/7+7/3=18/21+49/21=67/21
e: =>x:1/2=-2/3-2/5=-16/15
=>x=-16/15*1/2=-8/15
f: =>-8/5*x=-1/3+4/9=1/9
=>x=-1/9:8/5=-1/9*5/8=-5/72
g: =>-4/5x-1/4+x=-13/3
=>1/5x=-13/3+1/4=-52/12+3/12=-49/12
=>x=-49/12*5=-245/12
h: =>12/7:x-1/2=0 hoặc 2/5x-3/2=0
=>12/7:x=1/2 hoặc 2/5x=3/2
=>x=12/7:1/2=24/7 hoặc x=3/2:2/5=3/2*5/2=15/4
B
Viết cách giải luôn ạ!