K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2021

Chọn 4 cuốn sách bất kì: \(C_{12}^4=495\) cách

Chọn 4 cuốn sách sao cho có đủ 3 môn:

\(C_5^1.C_4^1.C_3^1=60\) cách

Chọn 4 cuốn sao cho không thuộc quá 2 môn:

\(495-60=435\) cách

6 tháng 9 2021

1.

ĐK: \(\left\{{}\begin{matrix}\dfrac{1+sinx}{1-sinx}\ge0\\1-sinx\ne0\end{matrix}\right.\Leftrightarrow1-sinx\ne0\Leftrightarrow sinx\ne1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

6 tháng 9 2021

2.

ĐK: \(1+sinx\ne0\Leftrightarrow sinx\ne-1\Leftrightarrow x\ne-\dfrac{\pi}{2}+k2\pi\)

7 tháng 3 2022

Áp dụng công thức \(\left(\dfrac{1}{v}\right)'=\dfrac{-v'}{v^2}\)

Ta có \(y'=\dfrac{-\left(x^2+x-1\right)'}{\left(x^2+x-1\right)^2}=-\dfrac{\left(2x+1\right)}{\left(x^2+x-1\right)^2}\)

7 tháng 3 2022

v chọn A nhe 

NV
19 tháng 8 2021

2.

Xét khai triển:

\(\left(1+x\right)^{2017}=C_{2017}^0+C_{2017}^1.x+C_{2017}^2x^2+...+C_{2017}^{2017}x^{2017}\)

Cho \(x=1\) ta được:

\(2^{2017}=C_{2017}^0+C_{2017}^1+...+C_{2017}^{2017}\)

\(\Rightarrow C_{2017}^1+C_{2017}^2+...+C_{2017}^{2017}=2^{2017}-C_{2017}^0=2^{2017}-1\)

3.

Xét khai triển:

\(\left(1+x\right)^{10}=C_{10}^0+C_{10}^1x+...+C_{10}^{10}x^{10}\)

Thay \(x=2\) ta được:

\(3^{10}=C_{10}^0+2C_{10}^1+2^2C_{10}^2+...+2^{10}C_{10}^{10}\)

\(\Rightarrow S=3^{10}\)

NV
19 tháng 8 2021

4.

Xét khai triển:

\(\left(1+x\right)^{15}=C_{15}^0+C_{15}^1x+...+C_{15}^{15}x^{15}\)

Thay \(x=1\) ta được:

\(2^{15}=C_{15}^0+C_{15}^1+...+C_{15}^{15}\)

Mặt khác, áp dụng công thức: \(C_n^k=C_n^{n-k}\) ta có:

\(C_{15}^0=C_{15}^{15}\)

\(C_{15}^1=C_{15}^{14}\)

...

\(C_{15}^7=C_{15}^8\)

Cộng vế:

\(C_{15}^0+C_{15}^1+...+C_{15}^7=C_{15}^8+C_{15}^9+...+C_{15}^{15}\)

\(\Rightarrow C_{15}^0+C_{15}^1+...+C_{15}^{15}=2\left(C_{15}^8+C_{15}^9+...+C_{15}^{15}\right)\)

\(\Rightarrow2S=2^{15}\)

\(\Rightarrow S=2^{14}\)

NV
2 tháng 6 2021

Mình bận 1 xíu, nhưng nếu học giới hạn thì bạn cần nắm rõ các khái niệm và các dạng vô định cũng như không phải vô định đã

Giới hạn này không phải là 1 giới hạn vô định (mẫu số xác định và hữu hạn), khi gặp giới hạn kiểu này thì chỉ có 1 cách: thay số tính trực tiếp như lớp 1 là được:

\(\lim\limits_{x\rightarrow\dfrac{\pi}{2}}\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{x}=\dfrac{sin\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}\right)}{\dfrac{\pi}{2}}=\dfrac{\sqrt{2}}{\pi}\)

 

2 tháng 6 2021

Dạ :|

NV
18 tháng 8 2021

MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB

Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)

\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)

Do MN song song PQ \(\Rightarrow\) MNQP là hình thang

Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)

Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)

\(\Rightarrow\) Thiết diện là hình thang cân

\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)

Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)

\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

NV
18 tháng 8 2021

undefined

NV
13 tháng 9 2021

6. Trên \(\left[0;\dfrac{\pi}{2}\right]\) hàm \(y=cosx\) giảm còn \(y=sinx\) tăng

\(\Rightarrow\dfrac{1+cosx}{1+sinx}\) giảm

\(\Rightarrow y_{max}=y\left(0\right)=2\)

\(y_{min}=y\left(\dfrac{\pi}{2}\right)=\dfrac{1}{2}\)

7. Hàm không tồn tại GTLN trên khoảng đã cho (x càng gần \(-\dfrac{\pi}{4}\) thì y càng gần dương vô cực)

\(1+tanx\) tăng, không âm \(\Rightarrow\dfrac{1}{1+tanx}\) giảm \(\Rightarrow y_{min}=y\left(\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)