K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do dó: ΔBDC vuông tại D

Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do dó: ΔBEC vuông tại E

Xét ΔABC có

BE là đường cao

CD là đường cao

BE cắt CD tại H

Do đó: AH⊥BC

b: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó: ADHE là tứ giác nội tiếp

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

b: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) co

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

CD=CM+MD=CA+DB

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: AC*BD=CM*MD=OM^2=R^2

Bài 9:

a: Xét tứ giác OPMN có

góc OPM+góc ONM=180 độ

=>OPMN là tứ giác nội tiếp

b: \(MN=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: ΔOAB cân tại O

mà OH là đường trung tuyến

nên OH vuông góc AB

Xét tứ giác OHNM có

góc OHM=goc ONM=90 độ

=>OHNM là tứ giác nội tiép

=>góc MHN=góc MON

2 tháng 3 2023

dạ em cảm ơn, làm giúp em bài 8 luôn được ko ạ

a:

ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc CMO+góc CIO=180 độ

=>CIOM nội tiếp

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CB\(\perp\)CA tại C

=>CB\(\perp\)AF tại C

Xét tứ giác BHCF có \(\widehat{BHF}=\widehat{BCF}=90^0\)

nên BHCF là tứ giác nội tiếp

=>B,H,C,F cùng thuộc một đường tròn

loading...

a: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp đường tròn đường kính AB

=>I là trung điểm của AB

b: Gọi H là giao của AD và BE

ABDE nội tiếp

=>góc HDE=góc HBA

=>góc HDE=góc HMN

=>DE//MN

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

26 tháng 6 2021

`D=(a+4sqrta+4)/(sqrta+2)+(4-a)/(sqrta-2)`

`=(sqrta+2)^2/(sqrta+2)+((2-sqrta)(2+sqrta))/(sqrta-2)`

`=sqrta+2-(2+sqrta)`

`=0`

26 tháng 6 2021

ĐK: a ≥ 0; a khác 4

\(D=\dfrac{a+\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)

\(=\dfrac{a+\sqrt{a}+4}{\sqrt{a}+2}-\left(2+\sqrt{a}\right)\)

\(=\dfrac{\left(a+\sqrt{a}+4\right)-\left(2+\sqrt{a}\right)^2}{\sqrt{a}+2}=\dfrac{a+\sqrt{a}+4-\left(4+4\sqrt{a}+a\right)}{\sqrt{a}+2}=\dfrac{a+\sqrt{a}+4-4-4\sqrt{a}-a}{\sqrt{a}+2}=-\dfrac{3}{\sqrt{a}}\)