Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)
Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)
=>\(4⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
=>\(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)
=>\(x\in\left\{1;4;16;25;49\right\}\)
Bài 5:
a) Ta có: \(\left(x-3\right)^2=11+6\sqrt{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=-3-\sqrt{2}\\x-3=3+\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}\\x=6+\sqrt{2}\end{matrix}\right.\)
c) Ta có: \(x^2-10x+25=27-10\sqrt{2}\)
\(\Leftrightarrow\left(x-5\right)^2=\left(5-\sqrt{2}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=\sqrt{2}-5\\x-5=5-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=10-\sqrt{2}\end{matrix}\right.\)
Bài 6:
c) Ta có: \(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{2021^2}+\dfrac{1}{2022^2}}\)
\(=\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=98+\dfrac{1}{2}-\dfrac{1}{2022}\)
\(\simeq98.5\)
Bài 3:
Ta có: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-7}{\sqrt{x}+2}=1-\dfrac{7}{\sqrt{x}+2}\)
A nguyên khi \(\dfrac{7}{\sqrt{x}+2}\) nguyên:
\(\Rightarrow7\) ⋮ \(\sqrt{x}+2\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
Mà: \(\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2\in\left\{7\right\}\)
\(\Rightarrow x\in\left\{25\right\}\)