K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

Bài 2:

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)

=>\(4⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

=>\(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)

=>\(x\in\left\{1;4;16;25;49\right\}\)

NV
10 tháng 8 2021

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{ABC}=90^0\Rightarrow\) B là góc nội tiếp chắn nửa đường tròn hay AC là đường kính

\(\Rightarrow AC=2R=100\left(cm\right)\)

Trong tam giác vuông ABC ta có:

\(sin\widehat{BAC}=\dfrac{BC}{AC}\Rightarrow BC=AC.sin\widehat{BAC}=100.sin30^0=50\left(cm\right)\)

\(\Rightarrow AD=BC=50\left(cm\right)\)

Áp dụng định lý Pitago:

\(AB=\sqrt{AC^2-BC^2}=50\sqrt{3}\left(cm\right)=CD\)

NV
10 tháng 8 2021

undefined

4 tháng 11 2023

a, xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có \(AM\) là đường cao
\(BC^2=AB^2+AC^2\left(pytago\right)\Leftrightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(sinABC=\dfrac{AC}{BC}=\dfrac{16}{20}\Rightarrow\widehat{ABC}\approx53^o8'\)
\(sinACB=\dfrac{AB}{BC}=\dfrac{12}{20}\Rightarrow\widehat{ACB}\approx32^o52'\)
\(AB^2=BM.BC\Rightarrow BM=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\)
b, Xét \(\Delta ABM\left(\widehat{AMB}=90^o\right)\) có \(AE\perp AB\)
\(AB^2=BM^2+AM^2\left(pytago\right)\Leftrightarrow AM=\sqrt{20^2-7,2^2}=\dfrac{16\sqrt{34}}{5}\left(cm\right)\)
\(AM^2=AE.AB\) (hệ thức lượng trong tam giác vuông)\(\left(1\right)\)
c, Xét \(\Delta AMC\left(\widehat{AMC}=90^o\right)\)
\(AC^2=AM^2+MC^2\left(pytago\right)\Leftrightarrow AM^2=AC^2-MC^2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AE.AB=AC^2-MC^2\left(đpcm\right)\)

2 tháng 3 2023

Bài 3.

a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\) 

Ta có: \(\widehat{OIC}=90^o\) 

           \(\widehat{OKC}=90^o\)

\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)

`=>` Tứ giác CIOK nội tiếp đường tròn

b. Xét \(\Delta AID\) và \(\Delta CIB\), có:

\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)

\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )

Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)

\(\Leftrightarrow IC.ID=IA.IB\)

c. Kẻ \(DM\perp AC\)

Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )

`->` Tứ giác DMCK là hình chữ nhật

\(\rightarrow DK\perp BC\)

Mà \(OK\perp BC\)

\(\Rightarrow\) 3 điểm D,O,K thẳng hàng

2 tháng 3 2023

em cảm ơn ạ

 

a: Ta có: \(A=\sin^21^0+\sin^22^0+...+\sin^288^0+\sin^289^0\)

\(=\left(\sin^21^0+\sin^289^0\right)+...+\sin^245^0\)

\(=1+1+...+1+\dfrac{1}{2}\)

\(=\dfrac{89}{2}\)