K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

Vì ABCD là hình chữ nhật ( gt )

⇒ ∠DAB = ∠ABC = ∠BCD = ∠CDA = \(90^o\)

Vì AH ⊥ BD ( gt )

⇒ ∠AHD = ∠AHB = \(90^o\)

Xét △ADH và △BDA, có

∠AHD = ∠BAD ( = \(90^o\) )

∠ADB chung 

⇒ △ADH ∼ △BDA (g-g)

b) Xét △AHB vuông tại H, có :

∠HAB + ∠ABH = \(90^o\) (Tính chất tam giác vuông)

Mà ∠DAH + ∠HAB = \(90^o\)

⇒ ∠DAH = ∠ABH 

Xét △ADH và △BAH, có :

∠DAH = ∠ABH (cmt)

∠AHD = ∠AHB (=\(90^o\))

⇒ △ADH ∼ △BAH (g-g)

⇒ \(\dfrac{AH}{BH}=\dfrac{DH}{AH}\left(TSĐD\right)\)

⇒ \(AH^2=BH.DH\)

c) \(AH^2=DH.BH\left(cmt\right)\)

⇒ \(AH^2=144\)

⇒ AH = 12cm

Xét △ADH vuông tại D, có :

\(AH^2+DH^2=AD^2\) (Định lí Py - ta - go)

\(12^2+9^2=AD^2\)

⇒ \(AD^2=225\)

⇒ AD = 15cm

Vì △ADH ∼ △BAH (cmt)

⇒ \(\dfrac{AD}{AB}=\dfrac{AH}{BH}\)

⇒ \(AB=\dfrac{AD.BH}{AH}\)

⇒ AB = 20cm

d) Xét △AHB, có :

K là trung điểm của AH ( gt )

M là trung điểm của BH ( gt )

⇒KM là đường trung bình của △AHB

⇒KM // AB

    \(KM=\dfrac{1}{2}AB\)

Vì ABCD là hình chữ nhật ( gt )

⇒ AB // CD

    AB = CD

Có KM // AB (cmt)

      AB // CD (cmt)

⇒ KM // CD

Vì N là trung điểm của DC ( gt )

⇒ DN = NC =\(\dfrac{1}{2}CD\)

          \(KM=\dfrac{1}{2}AB\) (cmt)

          AB = CD (cmt)

⇒ KM = DN = NC

Xét tứ giác KMND, có :

KM = DN (CMT)

KM // DN (CMT)

⇒ KMND là hình bình hành

Vì ABCD là hình chữ nhật ( gt )

⇒ AB ⊥ AD

Mà : KM // AB (cmt)

⇒ KM ⊥ AD

Gọi Q là giao điểm của KM với AD 

⇒ QM là đường cao của △AMD

Xét △AMD, có :

QM là đường cao của △AMD (cmt)

AH là đường cao của △AMD (AH⊥BC)

AH cắt QM tại K 

⇒ KD là đường cao của △AMD

⇒ KD ⊥ AM

Vì KMND là hình bình hành (cmt)

⇒ KD // MN 

    KD ⊥ AM (CMT)

⇒ MN ⊥ AM

⇒ ∠AMN = \(90^o\)

 

 

 

 

Bài 4:

a) Xét tứ giác DMEC có 

ME//DC(gt)

MD//EC(gt)

Do đó: DMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: CDME là hình bình hành(cmt)

nên Hai đường chéo CM và DE cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của DE(gt)

nên I là trung điểm của CM

hay C,M,I thẳng hàng 

26 tháng 4 2022

hông có câu 4,5 có câu 4 với câu 5 à

28 tháng 4 2022

:))))) Dạ vậy cậu chỉ giúp mình câu 4 với câu 5 đk ạ

Bài 5: 

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-4x+3=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{7}{5}\end{matrix}\right.\)

Bài 4: 

\(\Leftrightarrow2\left(\dfrac{1}{2}-3x\right)-3\left(\dfrac{9}{2}+2x\right)=42-2\left(\dfrac{1}{2}-4x\right)-6x\)

\(\Leftrightarrow2-6x-\dfrac{27}{2}-6x=42-1+8x-6x\)

\(\Leftrightarrow-12x-\dfrac{23}{2}=2x+41\)

=>-14x=105/2

hay x=-15/4

14:

a: Sxq=(2+1,5)*2*1,2=2,4*3,5=8,4m2

V=2*1,5*1,2=2*1,8=3,6m3

b: Bể chứa được tối đa là: 3,6*1000=3600 lít

4 tháng 12 2021

Bài 5:

\(a,\dfrac{2}{2x-4}=\dfrac{2}{2\left(x-2\right)}=\dfrac{1}{x-2};\dfrac{3}{3x-6}=\dfrac{3}{3\left(x-2\right)}=\dfrac{1}{x-2}\\ b,\dfrac{1}{x+4}=\dfrac{2\left(x-4\right)}{2\left(x+4\right)\left(x-4\right)};\dfrac{1}{2x+8}=\dfrac{x-4}{2\left(x+4\right)\left(x-4\right)}\\ \dfrac{3}{x-4}=\dfrac{6\left(x+4\right)}{2\left(x-4\right)\left(x+4\right)}\\ c,\dfrac{1}{x^2-1}=\dfrac{1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x-1}=\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ \dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ d,\dfrac{1}{2x}=\dfrac{x-2}{2x\left(x-2\right)};\dfrac{2}{x-2}=\dfrac{4x}{2x\left(x-2\right)};\dfrac{3}{2x\left(x-2\right)}\text{ giữ nguyên}\)

4 tháng 12 2021

Bài 4:

\(a,\dfrac{x^2-4x+4}{x^2-2x}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}=\dfrac{\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)}\\ \dfrac{x+1}{x^2-1}=\dfrac{1}{x-1}=\dfrac{x}{x\left(x-1\right)}\\ b,\dfrac{x^3-2^3}{x^2-4}=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+4}{x+2};\dfrac{3}{x+2}\text{ giữ nguyên}\)

22 tháng 10 2021

Bài 3: 

c: Ta có: \(3x^2+7x=10\)

\(\Leftrightarrow3x^2+7x-10=0\)

\(\Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\)