Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Đặt √x + 1 = a và √x - 1 - 1 = b.
Bước 2: Giải hệ phương trình: ∣a∣ + ∣b∣ = a + 8
Bước 3: Xét các trường hợp: - Khi a ≥ 0 và b ≥ 0: Ta có 2a = a + 8 ⇒ a = 8. Thay a = 8 vào √x + 1 = a ⇒ √x + 1 = 8 ⇒ √x = 7 ⇒ x = 49. Kiểm tra lại, ta có: ∣∣√49 + 1∣∣ + ∣∣√49 - 1 - 1∣∣ = √49 - 1 + 8 ⇒ 8 + 0 = 7 + 8 ⇒ 8 = 15 (sai). Vậy không có nghiệm trong trường hợp này.
- Khi a ≥ 0 và b < 0: Ta có 2a = a + 8 ⇒ a = 8. Thay a = 8 vào √x + 1 = a ⇒ √x + 1 = 8 ⇒ √x = 7 ⇒ x = 49. Kiểm tra lại, ta có: ∣∣√49 + 1∣∣ + ∣∣√49 - 1 - 1∣∣ = √49 - 1 + 8 ⇒ 8 + 0 = 7 + 8 ⇒ 8 = 15 (sai). Vậy không có nghiệm trong trường hợp này. - Khi a < 0 và b ≥ 0: Ta có 2a = -a + 8 ⇒ a = 4. Thay a = 4 vào √x + 1 = a ⇒ √x + 1 = 4 ⇒ √x = 3 ⇒ x = 9. Kiểm tra lại, ta có: ∣∣√9 + 1∣∣ + ∣∣√9 - 1 - 1∣∣ = √9 - 1 + 8 ⇒ 4 + 0 = 3 + 8 ⇒ 4 = 11 (sai). Vậy không có nghiệm trong trường hợp này. - Khi a < 0 và b < 0: Ta có 2a = -a + 8 ⇒ a = 4. Thay a = 4 vào √x + 1 = a ⇒ √x + 1 = 4 ⇒ √x = 3 ⇒ x = 9. Kiểm tra lại, ta có: ∣∣√9 + 1∣∣ + ∣∣√9 - 1 - 1∣∣ = √9 - 1 + 8 ⇒ 4 + 0 = 3 + 8 ⇒ 4 = 11 (sai). Vậy không có nghiệm trong trường hợp này.Vậy, phương trình ban đầu không có nghiệm.
\(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{1-x}-2+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+3}-\frac{x+3}{\sqrt{1-x}+2}+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(1-\frac{\sqrt{x+3}}{\sqrt{1-x}+2}+8\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\sqrt{x+3}=0\)
\(\Leftrightarrow x=-3\)
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\) ĐK : \(-1\le x\le8\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\left(a\ge0\right)\)
\(\Leftrightarrow a+\frac{a^2-9}{2}=3\)
\(\Leftrightarrow a^2+2a-15=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\left(N\right)\\a=-5\left(L\right)\end{matrix}\right.\)
Với \(a=3\)
\(\Leftrightarrow\sqrt{1+x}+\sqrt{8-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)
\(\Leftrightarrow\left(1+x\right)\left(8-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\left(TM\right)\)
Vậy \(S=\left\{-1;8\right\}\)
ĐKXĐ: \(-1\le x\le8\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=a>0\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)
Phương trình trở thành:
\(a+\frac{a^2-9}{2}=3\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{1+x}+\sqrt{8-x}=3\)
Ta có \(\sqrt{1+x}+\sqrt{8-x}\ge\sqrt{1+x+8-x}=3\)
\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi \(\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
Điều kiện:`x>=2`
Ta có:
`sqrt{x+6}-sqrt{x-2}=(x+6-x+2)/(sqrt{x+6}+sqrt{x-2})`
`=8/(\sqrt{x+6}+sqrt{x-2})`
`pt<=>8/(sqrt{x+6}+sqrt{x-2})(1+sqrt{(x-2)(x+6)})=8`
`<=>(1+sqrt{(x-2)(x+6)})/(sqrt{x+6}+sqrt{x-2})=1`
`<=>1+sqrt{(x-2)(x+6)}=sqrt{x+6}+sqrt{x-2}`
`<=>sqrt{(x-2)(x+6)}-sqrt{x+6}=sqrt{x-2}-1`
`<=>sqrt{x+6}(sqrt{x-2}-1)=sqrt{x-2}-1`
`<=>(sqrt{x-2}-1)(sqrt{x+6}-1)=0`
Vì `x>=2=>x+6>=8=>sqrt{x+6}>=2sqrt2`
`=>sqrt{x+6}-1>=2sqrt2-1>0`
`<=>sqrt{x-2}=1`
`<=>x=3(tm)`
Vậy `S={3}`
a) ĐKXD:...
\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)
Đến đây dễ rồi
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
\(ĐK:-1\le x\le8\)
Đặt \(\sqrt{1+x}=u;\sqrt{8-x}=v\)thì \(\left(u+v\right)^2=9+2\sqrt{uv}\Rightarrow\sqrt{uv}=\frac{\left(u+v\right)^2-9}{2}\)
Phương trình lúc này có dạng \(\left(u+v\right)+\frac{\left(u+v\right)^2-9}{2}=3\Leftrightarrow\left(u+v\right)^2+2\left(u+v\right)-15=0\)\(\Leftrightarrow\left(u+v+5\right)\left(u+v-3\right)=0\Leftrightarrow\orbr{\begin{cases}u+v=-5\left(L\right)\\u+v=3\left(tm\right)\end{cases}}\)
Như vậy, \(u+v=3\Rightarrow\sqrt{uv}=\frac{3^2-9}{2}=0\Rightarrow uv=0\)
u, v là hai nghiệm của phương trình \(t^2-3t=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=0\end{cases}}\)
* Nếu u = 3, v = 0 thì \(\hept{\begin{cases}\sqrt{1+x}=3\\\sqrt{8-x}=0\end{cases}}\Rightarrow x=8\left(tm\right)\)
* Nếu u = 0, v = 3 thì \(\hept{\begin{cases}\sqrt{1+x}=0\\\sqrt{8-x}=3\end{cases}}\Rightarrow x=-1\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;8\right\}\)
thể giải thích chỗ \(\left(u+v\right)^2=9+2\sqrt{uv}\) đc ko