K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022

vậy pt vô số nghiệm 

8 tháng 2 2022

Nhận thấy luôn trình luôn đúng \(\forall x\).

Vậy phương trình có vô số nghiệm.

7 tháng 2 2023

\(x^5+x^4+x^3+x^2+x=0\)

\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)

\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)

⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)

10 tháng 5 2018

\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)

\(\Leftrightarrow6x-2\ge15x\)

\(\Leftrightarrow x\le-\frac{2}{9}\)

Vậy \(x\le-\frac{2}{9}\)

6 tháng 11 2019

Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

11 tháng 11 2019

Thanks cô

6 tháng 2 2016

Em mới học lớp 6 thôi . Đợi hai năm nữa em giải cho !

6 tháng 2 2016

ta co  |x+1| =x+1 khi x lon hon hoac bang -1 ; |x+1|= - (x+1) khi x nho hon -1                                                                                         th1 : x lon hon hoac bang 1 thi x^2+2x+2x+2-2=0 suy ra x=0 hoac x=-4                                                                                                  th2: x nho hon -1 thi x^2+2x-2x-2-2=0 suy ra x=2 hoac x=-2 

20 tháng 1 2017

Theo bài ra , ta có : 

\(x^5=x^4+x^3+x^2+x+2\)

\(\Leftrightarrow x^5-1-\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)(1)

Ta tiếp tục xét phương trình này 

\(x^4+x^3+x^2+x+1=0\)(2) 

Nhân cả hai vế của phương trình (2) cho x - 1 , ta được 

\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\)(3) 

Phương trình (3) có nghiệm bằng x = 1 , nhưng giá trị này không thỏa mãn ở phương trình (2) 

=) ptvn

Suy ra phương trình (1) có dạng 

\(x-2=0\)

\(\Leftrightarrow x=2\)

Tập nghiệm của phương trình là S={2}

Chúc bạn học tốt =))

22 tháng 1 2017

thank you ban

6 tháng 11 2019

+) Với x =0 => y = -1 hoặc y =1 . Thay vào thỏa mãn

+) Với x khác 0

Có: \(x^4+x^3+x^2+x+1=y^2\)

<=> \(4x^4+4x^3+4x^2+4x+4=4y^2\)

=> \(4y^2=\left(4x^4+4x^3+x^2\right)+\left(3x^2+4x+4\right)>\left(4x^4+4x^3+x^2\right)=\left(2x+x\right)^2\)(1)

( vì \(3x^2+4x+4>0\))

và \(4y^2=\left(4x^4+x^2+4+4x^3+8x^2+4x\right)-5x^2< \left(4x^4+x^2+4+4x^3+8x^2+4x\right)\)

                                                                                                            \(=\left(2x+x+2\right)^2\)(2)

( vì x khác 0 => \(x^2>0\))

tỪ (1) VÀ (2) => \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

=> \(4y^2=\left(2x^2+x+1\right)^2\)

=> \(\left(2x^2+x\right)^2+3x^2+4x+4=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)

<=> \(x^2-2x-3=0\)

<=> x = -1 hoặc x = 3

Với x =-1 => y = -1 hoặc 1 . Thử lại thỏa mãn

Với x = 3 => y = 11 hoặc -11. Thử lại thỏa mãn.

Vậy: phương trình trên có nghiệm ( x; y ) là \(\left(0;\pm1\right);\left(-1;\pm1\right);\left(3;\pm11\right)\)

16 tháng 7 2016

\(\hept{\begin{cases}x+2y=3\\-2x-y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\-2\left(3-2y\right)-y\end{cases}< =>\hept{\begin{cases}x=3-2y\\-6+4y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\4y=12\end{cases}< =>\hept{\begin{cases}x=-3\\y=3\end{cases}}}}}}\)

2 tháng 12 2019

Ta có \(\left(x+1\right)\left(x^2+x+1\right)=0\)=>\(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\end{cases}}\)Mà x^2+x+1>=0 với mọi x =>x=-1

2 tháng 12 2019

\(x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(2x^2+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x+1=0\Leftrightarrow x=-1\)