K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

\(\hept{\begin{cases}x+2y=3\\-2x-y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\-2\left(3-2y\right)-y\end{cases}< =>\hept{\begin{cases}x=3-2y\\-6+4y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\4y=12\end{cases}< =>\hept{\begin{cases}x=-3\\y=3\end{cases}}}}}}\)

10 tháng 5 2018

\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)

\(\Leftrightarrow6x-2\ge15x\)

\(\Leftrightarrow x\le-\frac{2}{9}\)

Vậy \(x\le-\frac{2}{9}\)

4 tháng 3 2018

Ta có: \(\hept{\begin{cases}2x^2+4x+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{cases}}\)

Thay (2) vào (1) ta có:

 \(2x^2+2.2x+y^3+3=0\)

\(\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\)

\(\Leftrightarrow2x^2\left(y^3+1\right)+\left(2y+2\right)+\left(y^3+1\right)=0\)

\(\Leftrightarrow...\)

\(\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)=0\)

Dễ chứng minh \(\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)>0\)

\(\Rightarrow y+1=0\)

\(\Rightarrow y=-1\)

Thay vào có x=-1

18 tháng 7 2018

1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)

\(2y=-4\Rightarrow y=-2\)

                    \(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )

2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>

\(x+3x-2=6\)

\(4x=8\Rightarrow x=2\)

               \(\Rightarrow y=6-2=4\)

3)  \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2

\(3x-5+x=3\)

\(4x=8\Rightarrow x=2\)

                \(2y=3\Rightarrow y=\frac{3}{2}\)

4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )

\(5+y+3y=1\)

\(4y=-4\Rightarrow y=-1\)

                   \(\Rightarrow2x=4\Rightarrow x=2\)

mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...

18 tháng 5 2018

⇌ 2x(x+1)(y+1)+xy= -2y(y+1)(x+1)-xy

⇌ 2x(x+1)(y+1)+ 2y(y+1)(x+1)+xy+xy=0

⇌ (x+1)(y+1)(2x+2y)+2xy=0

⇌ 2(x+1)(y+1)(x+y)+2xy=0

⇌ 2((x+1)(y+1)(x+y)+xy)=0

⇌ x2y+x2+xy+x+xy2+xy+y2+y+xy=0

mk đc đến đó thui

thông cảm nha

18 tháng 5 2018

mk dùng cách đặt ẩn phụ: x+y=a; xy=b => (a+b)(a+1)=0 mà chưa ra đc gì nữa. nản

2 tháng 12 2019

Ta có \(\left(x+1\right)\left(x^2+x+1\right)=0\)=>\(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\end{cases}}\)Mà x^2+x+1>=0 với mọi x =>x=-1

2 tháng 12 2019

\(x^3+2x^2+2x+1=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(2x^2+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x+1=0\Leftrightarrow x=-1\)

6 tháng 2 2016

Em mới học lớp 6 thôi . Đợi hai năm nữa em giải cho !

6 tháng 2 2016

ta co  |x+1| =x+1 khi x lon hon hoac bang -1 ; |x+1|= - (x+1) khi x nho hon -1                                                                                         th1 : x lon hon hoac bang 1 thi x^2+2x+2x+2-2=0 suy ra x=0 hoac x=-4                                                                                                  th2: x nho hon -1 thi x^2+2x-2x-2-2=0 suy ra x=2 hoac x=-2 

3 tháng 2 2020

Ta có HPT : \(\hept{\begin{cases}2x+y=x^2\\2y+x=y^2\end{cases}}\)

\(\Leftrightarrow x^2-y^2=2x+y-2y-x\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

TH1 : \(x-y=0\)

\(\Leftrightarrow x=y\)

\(\Leftrightarrow2x+x=x^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x=y=3\end{cases}}\)

TH2 : \(x+y-1=0\)

\(\Leftrightarrow2\left(1-y\right)+y=\left(1-y\right)^2\)

\(\Leftrightarrow2-2y+y=1-2y+y^2\)

\(\Leftrightarrow y^2-y-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1+\sqrt{5}}{2}\Leftrightarrow x=\frac{1-\sqrt{5}}{2}\\y=\frac{1-\sqrt{5}}{2}\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\end{cases}}\)

Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(3;3\right);\left(\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\right\}\)