Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{2}{3}-2\ge2x+\frac{x}{2}\)
\(\Leftrightarrow6x-2\ge15x\)
\(\Leftrightarrow x\le-\frac{2}{9}\)
Vậy \(x\le-\frac{2}{9}\)
Ta có: \(\hept{\begin{cases}2x^2+4x+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{cases}}\)
Thay (2) vào (1) ta có:
\(2x^2+2.2x+y^3+3=0\)
\(\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\)
\(\Leftrightarrow2x^2\left(y^3+1\right)+\left(2y+2\right)+\left(y^3+1\right)=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)=0\)
Dễ chứng minh \(\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)>0\)
\(\Rightarrow y+1=0\)
\(\Rightarrow y=-1\)
Thay vào có x=-1
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
⇌ 2x(x+1)(y+1)+xy= -2y(y+1)(x+1)-xy
⇌ 2x(x+1)(y+1)+ 2y(y+1)(x+1)+xy+xy=0
⇌ (x+1)(y+1)(2x+2y)+2xy=0
⇌ 2(x+1)(y+1)(x+y)+2xy=0
⇌ 2((x+1)(y+1)(x+y)+xy)=0
⇌ x2y+x2+xy+x+xy2+xy+y2+y+xy=0
mk đc đến đó thui
thông cảm nha
mk dùng cách đặt ẩn phụ: x+y=a; xy=b => (a+b)(a+1)=0 mà chưa ra đc gì nữa. nản
Ta có \(\left(x+1\right)\left(x^2+x+1\right)=0\)=>\(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\end{cases}}\)Mà x^2+x+1>=0 với mọi x =>x=-1
\(x^3+2x^2+2x+1=0\)
\(\Leftrightarrow\left(x^3+1\right)+\left(2x^2+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow x+1=0\Leftrightarrow x=-1\)
Ta có HPT : \(\hept{\begin{cases}2x+y=x^2\\2y+x=y^2\end{cases}}\)
\(\Leftrightarrow x^2-y^2=2x+y-2y-x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=x-y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)
TH1 : \(x-y=0\)
\(\Leftrightarrow x=y\)
\(\Leftrightarrow2x+x=x^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x=y=3\end{cases}}\)
TH2 : \(x+y-1=0\)
\(\Leftrightarrow2\left(1-y\right)+y=\left(1-y\right)^2\)
\(\Leftrightarrow2-2y+y=1-2y+y^2\)
\(\Leftrightarrow y^2-y-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1+\sqrt{5}}{2}\Leftrightarrow x=\frac{1-\sqrt{5}}{2}\\y=\frac{1-\sqrt{5}}{2}\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(3;3\right);\left(\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\right\}\)
\(\hept{\begin{cases}x+2y=3\\-2x-y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\-2\left(3-2y\right)-y\end{cases}< =>\hept{\begin{cases}x=3-2y\\-6+4y=6\end{cases}< =>\hept{\begin{cases}x=3-2y\\4y=12\end{cases}< =>\hept{\begin{cases}x=-3\\y=3\end{cases}}}}}}\)