Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ge-\dfrac{1}{2}\\ PT\Leftrightarrow\sqrt{3x+4}=\sqrt{2x+1}+1\\ \Leftrightarrow3x+4=2x+2+2\sqrt{2x+1}\\ \Leftrightarrow x+2=2\sqrt{2x+1}\\ \Leftrightarrow x^2+4x+4=8x+4\\ \Leftrightarrow x^2-4x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\\ b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{2x-1}=2\sqrt{x-1}-1\\ \Leftrightarrow2x-1=4x-3-4\sqrt{x-1}\\ \Leftrightarrow2x-2-4\sqrt{x-1}=0\\ \Leftrightarrow x-1-2\sqrt{x-1}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Giải phương trình:
a)\(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{3}+x\)
b)\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}+1\)
a)Pt\(\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=x+\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)
\(\Leftrightarrow x+\sqrt{3}\ge0\)\(\Leftrightarrow x\ge-\sqrt{3}\)
Vậy...
b)Đk:\(x\ge4\)
Pt\(\Leftrightarrow\sqrt{\left(x-4\right)+2\sqrt{x-4}+1}=2\sqrt{x-4}+1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+1\right)^2}=1+2\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-4}+1=2\sqrt{x-4}+1\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Leftrightarrow x=4\) (tm)
Vậy...
a) Ta có: \(\sqrt{x^2+2x\sqrt{3}+3}=x+\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=x+\sqrt{3}\left(x\ge-\sqrt{3}\right)\\x+\sqrt{3}=-x-\sqrt{3}\left(x< -\sqrt{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-\sqrt{3}\\x=-\sqrt{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow x\ge-\sqrt{3}\)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
b, \(đk:x\ge2\)
Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0
\(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)
\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)
\(\Leftrightarrow x^3-11x^2+35x-25\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\) (*)
Có \(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)
Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5
c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)
\(\Leftrightarrow4x^3+x>0\)
Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))
\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....
d) Đk: \(x\ge\dfrac{3}{4}\)
Áp dụng bđt cosi:
\(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)
\(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)
\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)
\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)
Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)
Dấu = xảy ra khi x=1 (tm)
\(a,\left(đk:x\ge0\right)\)
\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)
\(x>0\)
\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)
\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)
\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)
\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x+6>=0\\x-2>=0\end{matrix}\right.\Leftrightarrow x>=2\)
\(\sqrt{x+6}-\sqrt{x-2}=2\)
=>\(\left(\sqrt{x+6}-\sqrt{x-2}\right)^2=4\)
=>\(x+6+x-2-2\sqrt{\left(x+6\right)\left(x-2\right)}=4\)
=>\(2\sqrt{\left(x+6\right)\left(x-2\right)}=2x+4-4=2x\)
=>\(\sqrt{\left(x+6\right)\left(x-2\right)}=x\)
=>\(\left\{{}\begin{matrix}x>=0\\\left(x+6\right)\left(x-2\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4x-12=x^2\end{matrix}\right.\)
=>x=3
b: ĐKXĐ: \(x-3>=0\)
=>x>=3
\(2\sqrt{x-3}-2x+3=0\)
=>\(\sqrt{4x-12}=2x-3\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\4x-12=4x^2-12x+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-12x+9-4x+12=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-16x+21=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) \(\sqrt{1-6x+9x^2}=9\)
\(\Leftrightarrow\sqrt{\left(1-3x\right)^2}=9\)
\(\Leftrightarrow\left|1-3x\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}1-3x=9\\1-3x=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=1-9\\3x=1+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-8\\3x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=\dfrac{10}{3}\end{matrix}\right.\)
b) \(\sqrt{2x-3}-\sqrt{x+1}=0\) (\(x\ge\dfrac{3}{2}\))
\(\Leftrightarrow\sqrt{2x-3}=\sqrt{x+1}\)
\(\Leftrightarrow2x-3=x+1\)
\(\Leftrightarrow2x-x=1+3\)
\(\Leftrightarrow x=4\left(tm\right)\)
c) \(\sqrt{9x^2+12+4}-2=3x\)
\(\Leftrightarrow\sqrt{\left(3x+2\right)^2}=3x+2\)
\(\Leftrightarrow\left|3x+2\right|=3x+2\)
\(\Leftrightarrow3x+2\ge0\)
\(\Leftrightarrow3x\ge-2\)
\(\Leftrightarrow x\ge-\dfrac{2}{3}\)
a: =>|3x-1|=9
=>3x-1=9 hoặc 3x-1=-9
=>x=-8/3 hoặc x=10/3
b: =>căn 2x-3=căn x+1
=>2x-3=x+1
=>x=4
c: =>|3x+2|=3x+2
=>3x+2>=0
=>x>=-2/3
\(a,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow2x+3=25\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\ge2\\ PT\Leftrightarrow x^2+2x=2x+4\\ \Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\)